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Supply and demand in the World oil market are balanced through responses to price movement
with considerable complexity in the evolution of underlying supply-demand expectation process.

In order to be able to understand the price balancing process, it is important to know the economic
forces and the behavior of energy commodity spot price processes. The relationship between the
different energy sources and its utility together with uncertainty also play a role in many important
energy issues. The qualitative and quantitative behavior of energy commodities in which the trend in
price of one commodity coincides with the trend in price of other commodities, have always raised
the questions regarding their interactions. Moreover, if there is any interaction, then one would like
to know the extent of influence on each other. In this work, we undertake the study to shed a light
on the above highlighted processes and issues. The presented study systematically deals with the
development of stochastic dynamic models and mathematical, statistical and computational analysis
of energy commodity spot price and interaction processes.

Below we list the main components of the research carried out in this dissertation.

(1) Employing basic economic principles, interconnected deterministic and stochastic models

of linear log-spot and expected log-spot price processes coupled with non-linear volatility process

are initiated. (2) Closed form solutions of the models are analyzed. (3) Introducing a change of

probability measure, a risk-neutral interconnected stochastic model is derived. (4) Furthermore,

under the risk-neutral measure, expectation of the square of volatility is reduced to a continuoustime

deterministic delay differential equation. (5) The by-product of this exhibits the hereditary effects on the mean-square
volatility process. (6) Using a numerical scheme, a time-series model is developed and utilized to estimate the state
and parameters of the dynamic model. In fact, the developed time-series model includes the extended GARCH model
as special case. (7) Using the Henry Hub natural gas data set, the usefulness of the linear interconnected stochastic
models is outlined.

(8) Using natural and basic economic ideas, interconnected deterministic and stochastic models

in (1) are extended to non-linear log-spot price, expected log-spot price and volatility processes. (9)
The presented extended models are validated. (10) Closed form solution and risk-neutral models of
(8) are outlined. (11) To exhibit the usefulness of the non-linear interconnected stochastic model, to
increase the efficiency and to reduce the magnitude of error, it was essential to develop a modified
version of extended Kalman filtering approach. The modified approach exhibits the reduction of
magnitude of error. Furthermore, Henry Hub natural gas data set is used to show the advantages of
the non-linear interconnected stochastic model.

(12) Parameter and state estimation problems of continuous time non-linear stochastic dynamic

process is motivated to initiate an alternative innovative approach. This led to introduce the concept

of statistic processes, namely, local sample mean and sample variance. (13) Then it led to the

development of an interconnected discrete-time dynamic system of local statistic processes and (14)

its mathematical model. (15) This paved the way for developing an innovative approach referred as Local Lagged
adapted Generalized Method of Moments (LLGMM). This approach exhibits the balance between model
specification and model prescription of continuous time dynamic processes. (16) In addition, it motivated to initiate
conceptual computational state and parameter estimation and simulation schemes that generates a mean square sub-
optimal procedure. (17) The usefulness of this approach is illustrated by applying this technique to four energy
commodity data sets, the U. S. Treasury Bill Yield Interest Rate and the U.S. Eurocurrency Exchange Rate data sets
for state and parameter estimation problems. (18) Moreover, the forecasting and confidence-interval problems are
also investigated.

(19) The non-linear interconnected stochastic model (8) was further extended to multivariate

interconnected energy commodities and sources with and without external random intervention processes. (20)
Moreover, it was essential to extend the interconnected discrete-time dynamic system

of local sample mean and variance processes to multivariate discrete-time dynamic system. (21) Extending the
LLGMM approach in (15) to a multivariate interconnected stochastic dynamic model

under intervention process, the parameters in the multivariate model are estimated. These estimated
parameters help in analyzing the short and long term relationship between the energy commodities.



These developed results are applied to the Henry Hub natural gas, crude oil and coal data sets.
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Abstract

Supply and demand in the World oil market are balanced through responses to price movement
with considerable complexity in the evolution of underlying supply-demand expectation process.
In order to be able to understand the price balancing process, it is important to know the economic
forces and the behavior of energy commodity spot price processes. The relationship between the
different energy sources and its utility together with uncertainty also play a role in many important
energy issues. The qualitative and quantitative behavior of energy commodities in which the trend in
price of one commodity coincides with the trend in price of other commodities, have always raised
the questions regarding their interactions. Moreover, if there is any interaction, then one would like
to know the extent of influence on each other. In this work, we undertake the study to shed a light
on the above highlighted processes and issues. The presented study systematically deals with the
development of stochastic dynamic models and mathematical, statistical and computational analysis
of energy commodity spot price and interaction processes.

Below we list the main components of the research carried out in this dissertation.

(1) Employing basic economic principles, interconnected deterministic and stochastic models
of linear log-spot and expected log-spot price processes coupled with non-linear volatility process
are initiated. (2) Closed form solutions of the models are analyzed. (3) Introducing a change of
probability measure, a risk-neutral interconnected stochastic model is derived. (4) Furthermore,
under the risk-neutral measure, expectation of the square of volatility is reduced to a continuous-
time deterministic delay differential equation. (5) The by-product of this exhibits the hereditary
effects on the mean-square volatility process. (6) Using a numerical scheme, a time-series model
is developed and utilized to estimate the state and parameters of the dynamic model. In fact, the
developed time-series model includes the extended GARCH model as special case. (7) Using the
Henry Hub natural gas data set, the usefulness of the linear interconnected stochastic models is

outlined.

viii



(8) Using natural and basic economic ideas, interconnected deterministic and stochastic models
in (1) are extended to non-linear log-spot price, expected log-spot price and volatility processes. (9)
The presented extended models are validated. (10) Closed form solution and risk-neutral models of
(8) are outlined. (11) To exhibit the usefulness of the non-linear interconnected stochastic model, to
increase the efficiency and to reduce the magnitude of error, it was essential to develop a modified
version of extended Kalman filtering approach. The modified approach exhibits the reduction of
magnitude of error. Furthermore, Henry Hub natural gas data set is used to show the advantages of
the non-linear interconnected stochastic model.

(12) Parameter and state estimation problems of continuous time non-linear stochastic dynamic
process is motivated to initiate an alternative innovative approach. This led to introduce the concept
of statistic processes, namely, local sample mean and sample variance. (13) Then it led to the
development of an interconnected discrete-time dynamic system of local statistic processes and (14)
its mathematical model. (15) This paved the way for developing an innovative approach referred
as Local Lagged adapted Generalized Method of Moments (LLGMM). This approach exhibits the
balance between model specification and model prescription of continuous time dynamic processes.
(16) In addition, it motivated to initiate conceptual computational state and parameter estimation
and simulation schemes that generates a mean square sub-optimal procedure. (17) The usefulness
of this approach is illustrated by applying this technique to four energy commodity data sets, the U.
S. Treasury Bill Yield Interest Rate and the U.S. Eurocurrency Exchange Rate data sets for state and
parameter estimation problems. (18) Moreover, the forecasting and confidence-interval problems
are also investigated.

(19) The non-linear interconnected stochastic model (8) was further extended to multivariate
interconnected energy commodities and sources with and without external random intervention pro-
cesses. (20) Moreover, it was essential to extend the interconnected discrete-time dynamic system
of local sample mean and variance processes to multivariate discrete-time dynamic system. (21) Ex-
tending the LLGMM approach in (15) to a multivariate interconnected stochastic dynamic model
under intervention process, the parameters in the multivariate model are estimated. These estimated
parameters help in analyzing the short and long term relationship between the energy commodities.

These developed results are applied to the Henry Hub natural gas, crude oil and coal data sets.
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Chapter 1

Preliminary Concepts and Tools

1.1 Introduction

In this chapter, we shall provide a number of basic definitions and important results which shall be

used in later chapters.

1.2 General Notations

i.e. that is.
a.s almost surely.
G:=H G is defined by H or G is denoted by H.
G(z) = H(x) G(z) and H (x) are identically equal.

0 the empty set.

GT the transpose of G.

aVb the maximum of a and b.
f:A—>B the mapping f from A to B.

Z set of integers

Ia(b) - I(av b)

theset {z € Z: a <z < b}.

R the real line.
R" the n-dimensional Euclidean space.
R the set of all nonnegative real numbers [0, 00).
Ry the set of all positive real numbers (0, o).
R™™ the space of real nx m-matrices.
C the family of all real-valued continuous functions.



C, : the family of all real-valued functions V' (x) which are continuously n-times
differentiable in x.
Cnm : the family of all real-valued functions V (¢, z) which are continuously n-times
differentiable in ¢ and m-times differentiable in z.
a#b : aisnotequaltob.

a€ A : aisanelementof A.

|A|| = ||All2 : the Euclidean norm of A.

trA =traceA : the trace of a square matrix A.
det A : determinant of square matrix A.
ov ov
Ve @ VW=V, Vo )= —,.c, — | .
v ( 1 n) <8.’1§'1 axn>
0*V
Ver (inxj)an = <83§'$)
1]/ nxn

1.3 Stochastic Differential Equation

Given a n-dimensional stochastic process on ¢t > g, a typical Ito-Doob type stochastic differential
equation is given by

dx = p(t,x)dt + o(t,x)dW(t), x(to) = Xo, (1.1)

where 1 : R x R” — R™%; g : R x R® — R™™ and W (t) = (Wi (t), ..., W,,,(t))7 is a standard
Wiener process on a filtered probability space (2, ¢, (F¢)t>0, P); the filtration function (F)¢>0
is right-continuous, and each F; with ¢ > 0 contains all P-null sets in ;. We say u is the drift
coefficient while ¢ is the diffusion coefficient.

Next, we state the Ito-Doob Lemma.

THEOREM 1.1 Let u be a continuous map from R x R™ — R such that u(t,x) has continuous
partial derivatives up to second order in x and to first order in t, then the process u(t,x(t)) also

has an Ito-Doob differential, and
du(t,x) = Lu(t,x)dt + uyo (t,x)dW(t) (1.2)
where L is a differential operator defined by:

Lu(t,x) = w(t,x) + uxe(t,x)pu(t,x) + %trace (o7 (t, ue(t, ) Jue (£, %) (t, wg(t,x))) . (1.3)



The following theorem concerns the classical existence, uniqueness and certain other properties

of the solution of (1.1).

THEOREM 1.2 [79] Assume that there exist two positive constants K and K such that

e (Lipschitz condition): for allx,y € R" and t € [ty,T]
it x) = nE )V llo(tx) —oty)? < Klz—yl*
e (Linear growth condition): for all (t,x) € [to,T] x R"

lnt o)V ot 0l? < K (1+]x]?),

where \ is the max symbol. Then there exists a unique solution x(t) to (1.1).

In the following, we state a result that exhibits the existence of non-linear stochastic differential

equations.

THEOREM 1.3 [[57], Thm 3.5] Suppose that the local solution of (1.1) exists on every cylinder
[to, 00) X Uy, where U, = {x € R" : ||x|| < n}. Moreover, suppose that there exists a nonnegative
function V' € Cy 2 such that for some constant ¢ > 0

LV <c¢V

1.4)
Vi = Hiﬁlf V(t,x) = 00 as n — oo,
x||>n

where the L-operator is defined in (1.3). Then, for every random variable x(ty) independent of the
process W;(t) — Wi(to), there exists a solution x(t) of the system of stochastic differential equation

(1.1) which is almost surely continuous stochastic process and is unique up to equivalence.

1.4 Behavior of Delayed Process

Consider a nonlinear delayed integro-differential equation of the form

0
leSft) =cv(t)+ B | v(t+s)ds. (1.5)

-7

In order to find approximate solution representation, we need to investigate the behavior of (1.5).
For this purpose, we present a result regarding its solution process. Our result is based on results of

[64] and [62].



DEFINITION 1.4.1 A non-constant solution v(t) of (1.5) is said to be

e oscillatory if v(t) has arbitrary large number of zeros on Rt = [0, 00), that is, there exists an

unbounded sequence {t,, € R} such that v(t,) = 0.

e non-oscillatory if v(t) is not oscillatory, that is, there exist a positive number T such that v(t)

is either positive or negative for all t > T.

Following the definition in [91],

DEFINITION 1.4.2 The stochastic integral with respect to Brownian motion W (t);cg+ of any simple

predictable process u : RT x 0 — R of the form
n
u(t,w) = Z Filg, ,4(1), teRY, (1.6)
=1

is defined by
| uodwe =3 Bovie) - W) 1.7
=1

where F; is an Fy,_, measurable random variable fori =1, ...,n, u(t) = u(t,w).

In the following, we state a result that exhibits the existence of solution of system of non linear

equations. For the sake of easy reference, we shall state the Implicit function theorem without proof.

THEOREM 1.4 Implicit Function Theorem[2] Let F = {I, F>, ..., F;} be a vector-valued func-

9tk ith values in RY. Suppose F € Ci on S. Let (ug;vo) be a

tion defined on an open set S € R
point in S for which F(uo;vo) = 0 and for which the q x q determinant det [D;F;(ug;vo)] # 0.
Then there exists a k— dimensional open set Ty containing vy and unique vector-valued function g,
defined on T and having values in RY, such that g € Cy on Ty, g(vo) = uo, and F(g(v);v) = 0 for

everyv € Ty.



Chapter 2
Linear Stochastic Modeling of Energy Commodity Spot Price Processes with Delay in

Volatility

2.1 Introduction

In real world situations, the expected spot price of energy commodities and its measure of variation
are not constant. This is because of the fact that a spot price is subject to random environmental per-
turbation. Moreover, some statistical studies of stock price [8] raised the issue of market’s delayed
response. This indeed causes the price to drift significantly away from the market quoted price. It is
well recognized that time-delay models in economics [41, 56, 123] are more realistic than the mod-
els without time-delay. Discrete-time stochastic volatility models [9, 38] have been developed in
economics. Recently, a survey paper by Hansen and Lunde [46] has estimated these types of models
and concluded that the performance of the GARCH(1,1) is better than any other model. Further-
more, Cox-Ingersoll-Ross(CIR) developed a mean reverting interest rate model that was based on
the mean-level interest rate as exponentially weighted integral of past history of interest rate and the
relationship between level dependent volatility and the square root of the interest rate [19]. Employ-
ing the Ornstein Uhlenbeck [126] and Cox-Ingersoll-Ross(CIR) [19] processes, Heston developed
a stochastic model for the volatility of stock spot asset. Recently [51], a continuous time stochastic
volatility models have been generalized.

In this work, using basic economic principles, we systematically develop both deterministic and
stochastic dynamic models for the log-spot price process. In addition, by treating a diffusion coeffi-
cient parameter in the non-seasonal log-spot price dynamic system as a stochastic volatility function
of log-spot price, a stochastic model for interconnected system of log-spot price, expected log-spot
price and hereditary volatility process is developed. Introducing a numerical scheme, a time-series
model is developed and it is utilized to estimate the system parameters. The organization of this
study is as follows:

In Section 2.2, we develop a stochastic interconnected models for energy commodity spot price

and give an illustration by analyzing Henry Hub Natural gas daily Spot price from 1997 to 2011. In



Section 2.3, we obtain closed form solutions of the log of spot and the expected log of spot prices. In
Section 2.4, by outlining the risk-neutral dynamics of price process, sufficient conditions are given
to ensure that the risk-neutral dynamics of our model is equivalent to the developed model in Section
2.2. Furthermore, it is shown that the mean of the square of volatility under the risk-neutral measure
is a deterministic continuous-time delay differential equation. In addition, sufficient conditions are
also given to investigate both the oscillatory and non-oscillatory behavior of the expected value of

square of volatility [62, 64].

2.2 Model Derivation

We denote S(t) to be the spot price for a given energy commodity at a time ¢. Since the price
of energy commodity are non-negative, to minimize ambiguity and for the sake of simplicity, it is

expressed as an exponential function of the following form;

S(t) = exp (w2(t) + f(t)), 2.1)

where x2(t) stands for the nonseasonal log of the spot price at time ¢, f(¢) is the price at ¢ influenced
by the seasonality and it is considered as a Fourier series comprising of linear combinations of sine

and cosine functions;

N
f(t) = A9+ Z (Ak cos [27;%} + By, sin [T}) ’ 22)

k=1
where P, Ay, Ay, Br,k = 1...N are all constant parameters. P is the period which represents the
number of trading days in a year. Without loss in generality, we choose N = 2. By modeling the
seasonal term this way, we are able to account for the peak season high price and off peak season
low price of gas.

We present the dynamics for the spot price process.

2.2.1 Deterministic Non-Seasonal Log-Spot Price Dynamic Model

Under the basic economic principle of demand and supply processes, the price of a energy com-
modity will remain within a given finite upper bound. Let x > 0 be the expected upper limit of
xo(t).

In a real world situation, the nonseasonal log of spot price is governed by the spot price dynamic

process. This leads to a development of dynamic model for the nonseasonal process z2(t). In



this case, k — xa(t) characterizes the market potential for x2(¢) per unit of time at a time ¢. This
market potential is influenced by the underlying market forces on the nonseasonal log of spot price,
x2(t). This leads to the following principle regarding the dynamic of non-seasonal log-spot price
process of energy goods. The change in nonseasonal log of spot price of the energy commodity
Axy(t) = zo(t + At) — x2(t) over the interval of length |At¢| is directly proportional to the market
potential price.

Axa(t) x (k — xo(t))At. (2.3)

This implies
dzo(t) = v(k — z2(t))dt, (2.4)

where + is a positive constant of proportionality, dzo(t) and dt¢ are differentials of x4(¢) and ¢
respectively. From this mathematical model, we note that as the nonseasonal log price, x2(t) fall
below the expected price x, k — x2(t) is positive. Hence xo(t) is increasing at the constant rate
per unit size of k — x2(t) per unit time. On the other hand, if the nonseasonal log price () is
above the expected price k, then kK — x2(t) is negative and hence x2(t) decreases at the rate v per
unit size per unit time.
From (2.3), we note that the steady-state or equilibrium state nonseasonal log of spot price is
given by
x5 = K. (2.5)

In the real world situation, the expected price of the nonseasonal log spot price x is not a constant
parameter. Therefore, we consider the expected nonseasonal log of spot price to be the mean of
nonseasonal log spot price, z2(t), at time ¢ denoted by z1 (¢). Under this assumption, (2.4) reduces

to

dza(t) = y(21(t) — 22(t))dl. (2.6)

Moreover, in order to preserve the equilibrium of nonseasonal log spot price (x = x3), we further
assume that the mean of nonseasonal spot price process is operated under the principle described by
(2.3).

Az (t) < (K — z1(t))At (2.7)

and hence

dz1(t) = s — a1 (1)) dt, 2.8)



where  is a positive constant of proportionality. From (2.6) and (2.7), the mathematical model for
the deterministic nonseasonal spot price process is described by the following system of differential

equations:
dz1(t) = p(k — 21(t))dt,
dzo(t) = y(x1(t) — z2(t))dt.

2.9)

2.2.2 Stochastic Non-Seasonal Log-Spot Price Dynamic Model

We note that in (2.3),  is not just the time-varying deterministic log of spot price, instead it is a

stochastic process describing random environmental perturbations as follows:
Kk =x1(t) + ea(t) (2.10)

where 21 (t) is the deterministic part and ex(t) is the stochastic white noise process. From this, (2.4)
becomes
daa(t) = y(wa(t) + ea(t) — wa(t))dt
= y(@1(t) — w2(t))dt + yea(t)dt 2.11)
= y(@1(t) — w2(t))dl + o (t, w2(t))dWa(t).
where o (t, 22(t))dWa(t) = yea(t)dt and dWo(t) ~ N (0, dt).

Following the argument used in the derivation of (2.11), the dynamic from (2.7) reduces to
dz1(t) = p(k — z1(t))dt + 6dW4(t) (2.12)

where 6 > 0 is a constant and dW7 (t) ~ N (0, dt).
From (2.12) and (2.11), the mathematical model for the stochastic nonseasonal spot price process

is described by the following system of differential equations:

dry = p(k — x1)dt + 6dWi (1),
dro = y(x1 — x2)dt + o (t, x2)dWs(t).

2.13)

2.2.3 Continuous Stochastic Volatility Model with Delay

When considering energy commodities, the measure of variation of the spot price under random
environmental perturbation is not predictable, because it depends on nonseasonal log of spot price.
Bernard and Thomas [8] in their work raised the issue of market’s delayed response. They observed
changes in drift returns that leads to two possible explanations. First explanation suggests that a

part of the price response to new information is delayed. The second explanation suggests that



researchers fail to adjust fully a raw return for risks, because the capital-asset-pricing model used
to calculate the abnormal return is either incomplete or incorrect estimation. In this study, we
incorporate the past history of nonseasonal log of spot price in the coefficient of diffusion parameter,
that is, the volatility o (¢, z2(t)) of the spot price follows the GARCH model [140]. It is assumed
that the measure of variation of random environmental perturbations of x;(¢) is constant. Under
these assumptions, we propose an interconnected mean-reverting non-seasonal stochastic model for

mean log-spot price, log-spot price,and volatility as follows:

d.%'l = ,u(/{ — x1>dt + (5dW1(t), xl(to) = X01
dxo = 'y(xl — I'Q)dt + O'(t, ﬂfg)dWQ(f), :Eg(to) = Tp2 -
do?(t,x9) = [oe + 8 [ftt_T o(s,22)e 7= dWy(s) + 6 f;t_T P(s, t)dwl(s)] i 219

+co?(t, z2)] dt,

where

¢(a,b) = = (e710=a) — e=n(b=9)) | vy are defined in (2.4) and (2.8), a,b e R.  (2.15)

For the sake of completeness, we assume the following

H; : 29:(0) = 22(t +0),0 € [-7,0], 7, u, 6 € Ry, 0, 3, c are in R, (we will later show that
—2<¢<0), 0:[0,T] xC — Ris acontinuous mapping, C is the Banach space of continuous
functions defined on [—7, 0] into R and equipped with the supremum norm; W (¢) and Wa(t) are
standard Wiener process defined on a filtered probability space (€2, Fy, (Ft)t>0, P), the filtration
function (F);>o is right-continuous, and for ¢ > 0, F; contains all P-null sets. We know that

system (2.14) can be re-written as
dx = [Ax+pldt+ ) (t,z2) dW(t), x(to) = xo, (2.16)

where

T — K 19
= | O Az T Y = [ S ) = °
(1) v 0 0 ot z2(t))
W(t) — Wi Cxo— To1
Ws 02




Moreover, (2.16) can be considered as a system of nonlinear It6-Doob type stochastic perturbed

system of the following deterministic linear system of differential equations
dx = Axdt. (2.17)

In the following, we present an illustration to justify the structure of log spot price dynamic model.

2.2.4 Illustration

We present an illustrate the above described interconnected stochastic dynamic model for non-
seasonal log spot price of energy commodity under the influence of random perturbations on mean-
level and delayed volatility.

We consider the Henry Hub Natural Gas Daily spot price from 1997 to 2011.

Henry Hub Matural Gas Daily Spot Prices
(1997-2010)

Price($/ MhiBtu)
=
T

Figure 1.: Plot of Henry Hub Daily Natural Gas Spot Prices, 1997-2011

We can clearly see that
e Prices appear as being randomly driven and clearly non-negative
e There is a tendency of spot prices to move back to their long term level (mean reversion).
e There are sudden large changes in spot prices (jumps/spikes).
o There is an unpredictability of spot price volatility.

A summary of the statistics is presented in Table 1 below. We find that In [sg(;n} has the smallest

variance. Thus, it suggests a good candidate for our modeling. Hence, we use the logarithmic price,

rather than the raw price data for our model.
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Table 1: Descriptive statistics of Henry Hub daily natural gas spot prices, 1997-2010

Mean Variance | Skewness | Kurtosis | Minimum | Maximum
St 4.9519 2.4966 1.0391 4.3491 1.05 18.48
Si+1 — S | -0.0001142 | 0.3189 -0.7735 | 191.8911 -8.01 6.50
In(Sy) 1.4754 0.5048 -0.0465 2.1540 0.0488 2.9167
ln(sg—?) 2.8485e-5 | 0.0473 0.4814 22.0473 -0.56 0.5657

2.3 Closed Form Solution

In this section, we find the solution representation of (2.16) in terms of the solution of unperturbed
system of differential deterministic (2.17). This is achieved by employing method of variation of

constants parameter [70].

THEOREM 2.1 (Closed Form Solution)
Let x(t) = x(t,to;x0) and y(t,to;x0) = P(t,to)xo be the solutions of the perturbed and unper-
turbed system of differential equations (2.16) and (2.17) respectively. Then

e—,u(t—to) 0 K (1 _ e—ﬂ(t—to))
x(t) = (t—to) Xo +
to,t) et to, t
Wlio.1) e (b0, ) (2.18)
N ft Se M=) dTVy (s)
O Sp(s, D)AWL () + o (s, 2(s))e 1) AW (s)
where
x
xo=| |, (2.19)
Z02
w(a,b) =k ([1 - e_V(b_“)} — ¢(a, b)) , a,beR. (2.20)
and ¢ is defined in (2.15); the fundamental solution, ®(t) of (2.17) is given by
e—H(t—to) 0
D(t, ty) = 2.21)
(to,t) et

Proof. The result follows by imitating the eigenvalue type method described in [69, 70]. Therefore

t
z1(t) = e M) g0y g (1 - e*“(t*to)) +6 [ e HEaw(s), (2.22)

to
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t

za(t) = ¢(to, t)wo1+e 0 g0 tw(to, t)+0 ¢(8at)dW1(S)+/t0’(8@2(8))67(ts)dW2(5)-

to to

In the following, we present the statistical properties of the solutions (2.22) and (2.23).

THEOREM 2.2 Under the hypothesis of Theorem 2.1, we have

e—H(t—to) 0 K (1 _ e*#(t*to))
Bfx(t)] = xo + 7
¢(to,t) e 7E7H0) w(to, t)
| §2 L e=2ult=s)gg
varlx(t)] = . fto .
I fto E(0?(s, x2(s)))e 27t ds + §2 fto #?(s,t)ds
Moreover,
li "
Jim Efx(t)] = ;
K
_ 5
. _ 2u
Jim varfx(t)] = im E@(taa) | [ B }
L t—00 2y 2 | pty
Hence,
Jim Efz1(1)] = lim Elz2(2)] = &,
. 52
tlg};lo var(z1(t)) = %
Proof. From (2.18), we observe that
e~ H(t=to0) 0 K (1 - e_“(t_to))
Ex(t)] = X0 +
d(to,t) et w(to,t)
Hence,
E(x1(t) = zoe ) 45 (1 - e_“(t_t‘)))
E(z2(t) = zo2e YT 4 6(to, t)wor + w(to,t)
t 52
S —2p(t—s) g — 2 |1 _ g—2m(t—t0)
var (x1(t)) ) /to e ds 2 [1 e }

var (zo(t)) = /tE(UQ(s,g;g(s)))e—%(t—@ds+52 t¢2(s,t)ds.

to to

The result follows by taking the limits as ¢ — oo.

12
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REMARK 1 From Theorem 2.2, we observe that on the long-run, the mean-level of xo(t) and x1 (t)

are the same and it is given by k.

2.4 Risk-Neutral Dynamics and Pricing

In order to minimize the risk of usage of mathematical model (2.16), we incorporate the risk neutral
measure. From the dynamic nature of (2.16), it is known [20] that this model has affine multi-factor
structure. In the following, we present a risk neutral measure induced by this type of model. This
indeed leads to a risk neutral dynamic model with respect to (2.16). Christa Cuchiero, [20], showed
in their work that the market price of risk ©(t) = (©1(¢), ..., ©,(t)) with respect to the stochastic
differential equation (1.1) is given by

n(tXe) (t)

paT) — T

nd; (t7Xt)
P(t,T)

0,(t) = L i=1,2,...,n, (2.24)

where P(t,T) = G(t,x) is the zero-coupon bond price, () is the short-term rate factor for the

risk-free borrowing or lending at time ¢ over the interval [t, ¢ + dt], and n(¢,x;), (¢, x) are defined

by
t,x) = LG(t,x),
n(t:x) 60(5 ) ) (2.25)
;X
¢(t,x) = o o(t,x),
where % is the gradient of (G, and the L-operator is defined in (1.3)..

In fact, since our price model X(t) = (x1(t), z2(¢))” (2.16) is an affine multi-factor model, the

short-term rate factor r(¢) and the zero-coupon bond price P(¢,T’) can be represented as

r(t) = g+ hX(t)
P(t,T) = exp(a(t,T)+B(t,T)X(t)),

(2.26)

where ¢ € R, h € R?, a(t,T) and B(¢t,T) = (B1(t,T), B2(t,T),..., By(t,T)) are arbitrary
smooth functions. For n = 2, from (2.24) and (2.25), the market price of risk ©(¢) = (01 (t), 02(t))
is given by

O(t) = a + b()X(t), 2.27)
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where

¢
a - “elxm= | Y
as,0 asp T (t)
IB3(t,T)o?(t,x) + 2&D) _
azolt) = Bmf T
Bt T) —
210 = B 6 Tl x)
N —’}/Bg(t, T) — hg
22() = B To(tx)
da(t,T
wo(t) — PBLETE S Bt T) + L7 -
’ Bl(th)é ’
. —,U,Bl (t, T) - h1
aa(t) = Bi(t,T)8
a1,2<t) = 0.

We incorporate a market price of risk process that gives a risk-neutral dynamics of the same class

as (2.16) in the following lemma.

LEMMA 2.1 Let us assume that a and B;, 1 = 1,2 in (2.26) are arbitrary constants. The market

price of risk processes reduces to;

01 (t) = ayo0+ta;1r (t) + a1,2$2(t) (2.28)

92(t) = azvo(t) + (l271(t)1131(t) + (1272(75)2132@). (2.29)

In addition, let us assume that 0;, i = 1,2 satisfy the Novikov’s condition [108] with the P-Wiener

process;
Wi(t) = Wh(t) + "0, (w)du
0= WH(0)+ 00 030,
Wy (t) = Wy (t) + fto 92(u)du
and
hi+hy = 0,
t = =0,
C : azo(t) ?’2 ) 2.31)
v = By P= 5
K = puK —daip,

where hi, ho are arbitrary real numbers; i, k and § are defined in (2.14), 6;, aij, 1 = 1,2,

7 =0,1,2 are defined in (2.27).
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Then the risk-neutral dynamics of x1(t) and x2(t) remain within the same class,
de = [Ax +pldt+ > (t,xs) dW(t), x(to) =xo (2.32)

satisfying Hy,where

_ %% x
Wi = | 1 Cxo— 01
Wa T02

Moreover, it satisfies Hypothesis Hi. Hence,

dry = ﬂ(l?', — ﬂ?l)dt + 5dW1(t),
dre = & (xl — xg) dt + U(t, wg)dWQ(t).

(2.33)

Proof. The proof follows by substituting (2.30) and C; into (2.16). ]

REMARK 2 Under the assumption of Lemma 2.1, it is obvious that the solution to (2.32) is given

by
efﬂ(tfto) 0 K (1 — efﬂ(tfto))
X(t) = B ~ Xg +
d(to, t) e (700) @(to, t)
. Se FE=5)qWy (s) (2.34)
to ?

56(s,t)dW1(s) + o (s, 29(5))e TE=9) dWy(s)
X(to) = Xo,
where ¢ and @ are defined as

P(a,b) = %7 (e=70-0) _ g=filb=a))

o i B (2.35)
w(a,b) =& ([1 — e =] — @(a,b)).
In the following, we state a result with regards to (2.34).
LEMMA 2.2 Under the assumption Hy, (2.34) is equivalent to
e FT 0 k(1—e k)
x(t) = - | x(t-1)+
0,7) e 77 w(0, 7
3(0,7) (0.7 036

Se =) dW, (s)

L o
5¢(s,t)dW1(s) + o (s, 22(s))e TE=) dWy(s)
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where x(t — T) =

) (t — T)
Proof. The proof follows by changing the initial time ¢g in (2.34) to t — 7. ([l
Hence,
t
e1(t) =z1(t —7)e T+ R(1—eFT) 4§ / e =AW (s), (2.37)
t—r

x9(t) = xao(t— 7)6_77 +¢(0,7)x1(t — 7) + @(0,7) + ft; o(s, xg(s))e_”_/(t_s)dﬁ/g(s)—i—

5ft T u t dWl( )
(2.38)

REMARK 3 From (2.38), we have

fttﬂ_ U(s,xg(s))e—ﬁ(t—s)dWQ + 5ft o(u, t)dWy(u) = xg(t) — 2ot — T)e—ﬁ(r)

The dynamics of volatility process under risk-neutral dynamic system is described by

t t 2
do?(t,z9) = |a+p [ / o(s,x2)e "D dWo(s) +6 | o(s, t)dWl(s)} (2.40)
t—1 t—1
+eo?(t,x0)] dt. (2.41)
We set
u(t) = Ep[o?(t, z2(t))]. (2.42)

Taking the conditional expectation of both sides under the measure P, we obtain the following

deterministic delay differential equation

t t
di;ff) = a+ 88| @(s,0)2ds+ B [ uls)e”Tds + cu(t)

t—1 t—1

t
= a+6°D+p u(s)e” ) ds + cu(t)

t—7

where

Hence

=cu(t)+ 4 u(s)e ) ds + v, (2.43)




where
v=a+ B6°D.

REMARK 4 The equilibrium solution process u*(t) of (2.43) satisfies the following integral equa-

tion
t
)+ 6 [ u(s)e™ds + v =0, (2.44)
t—1
since du;t(t) = 0. In particular, u*(t) is as follows;
v
u*(t) = —
() c+ 2’6,;(1—6_277)]
Using the transformation
v(t) = u(t) —u*(t) (2.45)
we have
d’l)(t) t —25(t—s) * ¢ * —27(t—s)
e cu(t) + B v(s)e 1V ds + |eu*(t) + 5 u*(s)e """ Vds + v
t—7 t—1
t
= cv(t)+p v(s)e T3 s,
t—1
Hence,
dvl(t 0 .
Zi ) =cv(t)+p v(t + s)eQVsds. (2.46)

—T

In order to find approximate solution representation, we need to investigate the behavior of (2.46).
For this purpose, we present a result regarding its solution process. Our result is based on results
of [62] and [64]. Using definition 1.4.1, we prove the following Lemma using the definition of

oscillatory and non-oscillatory solution of (2.46).
LEMMA 2.3 Under the following transformation
v(t) = e“2(t), (2.47)

(2.46) is equivalent to
0
z(t)=p e(c+2;’)sz(t + s)ds. (2.48)

Moreover,

e (i) for B < 0and cfgﬁ [e_(c‘*'%)T — 1] < %, every solution of (2.46) is non-oscillatory.
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e (i) for B < 0 and Cf;,fy [e*(cﬁﬁ)T —e*(c”ﬁ)L] > % v € (0,7) every solution of (2.46)

oscillates.

e (iii) for 8 > 0, (2.46) has non-oscillatory solutions.

Proof. To prove (i), suppose that

BT _ [ef(c+2'7)r _1] <
c+ 2y -

|

, B<0, (2.49)

We observe that every solution of (2.46) is non-oscillatory if and only if every solution (2.48) is
non-oscillatory. Therefore, we only need to show that (2.48) has non-oscillatory solution.

Suppose that a solution of (2.48) has the form
2(t) = eM (2.50)
where A is an arbitrary constant which satisfies the equation
0 —
A= [ et HNsgg (2.51)
—T

Define
0
GA)=X—p3 [ 27 Nsgg, (2.52)

—T

We show that G(\) has at least one real root. From (2.49), (2.50) and nature of 3, we note that

G(0) > 0 and for any s € [T, 0],

0
G\ < A— Be”/ elet2s s
0 iT 0
= -0 elct2Ms g [—e + exp |:—€T,8

-7

S(c+27)s ds] ]

< 0 by (2.49).
Therefore, (2.51) has at least one real root \* that lies between Se fET elet27)3ds and 0, showing

that (2.46) has non-oscillatory solution. ]

Next, we outline the proof for Lemma 5 (ii)
Proof. Suppose

B
c+ 2y

5 5 1
e (N7 _o=(e20e| 5 20 3. <0, for any ¢ € (0, 7). (2.53)
e

We only need to show that (2.48) oscillates. To verify this, suppose on the contrary that z(t) is a

non-oscillatory solution of (2.48). Then for sufficiently large ¢ > 0 and without loss in generality,
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z(t) > 0 fort > t, where t; = to — 7. Since § < 0, 2 (t) < 0 for t > t. For any ¢ > 0 such that

—7 < —t < 0, from (2.46) and (2.48), we have the following inequalities

Z(t)<p 203t 4 5)ds, t > t1. (2.54)

-7

Hence, forany s € (—7,—¢), t — 7 <t+s <t—1<t,(2.54) yields
2(t) < z(t —1) < z(t + s). (2.55)

Define
—, t > 1. (2.56)

Note that w(t) > 1. Dividing (2.54) by z(t) and using (2.55), we have

~—

2 (t B[ ~(ct29n _ —(c+27) 2 (t) T (eram)s 2T £ 8)
_ L T t _ 2 Sid < 0.
PO ¢ Jutt) < RO sy =0

Integrating from ¢ — ¢ to ¢, for ¢t > 14,

log z(t) — log z(t — 1) —

t
[6*(c+2’7)L _ 6*(c+2’7)7} / w(s)ds < 0,

c+ 2’7 t—t
and hence
s —(c+27 - 5 !
> c+2y)T _ —(c+29) > ]
logw(t) > 1o {e e } t_Lw(s)ds, t>t (2.57)

Set

lim infw(t) = K. (2.58)

t—o0

Since w(t) > 1, K > 1, hence K is either finite or infinite. We show next that none of these cases
is true.
Case 1. Assume K is finite. There exist sequence {t,}, t, > t1 3 t, — oo and w(t,) — K as

n — oo. By integral mean value theorem, 3 ¢,, € (¢, — ¢, t,,) such that

logw(t,) > Cfgy [e=(eA2N7 — e=(+20] w(cy,). (2.59)

Define K7 = lim w(cy).
n—oo

Noting that K; > K and taking limits of (2.59), we have

IOgK Z 5L |:6—(C+2’7)’T _ 6—(C+2’7()L:| ) (260)
K c+ 2y
Since
logK 1
= - 2.61
PETK T (261)
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the relation (2.60) implies

ﬁb [67(04»2’?)7‘ o 67(C+27Y)L:| < 1 (262)
c+ 2y e
which contradicts (2.53). Hence K is not finite.
Case 2. Assume that K is infinite, from (2.56) and (2.58), we have
i |29 — . (2.63)
t—00 z(t)

Choose t, =t —a, a > 0,such thatt — ¢ < t, < t fort > t;. Integrating both sides of (2.54)

from t, to t and t — ¢ to t,, we have

—t t
z(t) — 2(ty) — B olct27)s [/ 2(u + s)du} ds <0, t>1 (2.64)
—T ta
—t B T
2(ty) —2z(t—0) = B elet27)s [/ z(u + s)du] ds <0, t >t (2.65)
-7 t—tu

respectively. We observe that for any u € [ty,t], s € [-7,—¢], u+s < t+s <t —, hence,
2(t—1) < z(t+s) < z(u+s), and for any u € [t — ¢,ti], u + 8 < t« + s < t. — L, hence
z(ty — 1) < z(t« +s) < z(u + s). Hence (2.64) and (2.65) become

Ba_ [ —(erm)r _ o~(et29)
_ C T __ C L < > .
2(t) + 2(t L)C+ 2 [e e } < z(ty), t>1 (2.66)
Z(t*) _|,_ Z(t* . L)M |:€7(C+2'_Y)T _ 67(C+27)L:| < Z(t _ L) t > t]_ (267)
c+ 2y - T
Dividing (2.66) and (2.67) by z(t) and z(¢.) respectively, and using (2.53) and (2.63), we have
12 . t—
i 2 gy 20 (2.68)
t—o0 z(t) t—00 z(t*)
Dividing (2.66) by z(t.) we have
2(t) | z2(t—1) Ba —(c+27) —(c+27)
¢ T — ¢ H<1, t>t 2.69
z(ty) - z(te) c+2y ¢ ¢ =0 o= (2.69)
which contradicts (2.68) and (2.53). O

The proof of Lemma 5(iii) is similar to that of 5(i).
Following Lemma 2.3, the delayed differential equation (2.43) has a non-oscillatory solution if
B < 0 and C_’f—% [e_(c“:Y)T — 1] < é Under these condition, we can describe the asymptotic

behaviors of solutions of (2.43). Moreover, we seek a solution in the form u(t) = 11 + e,
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where 11,19 and p are arbitrary constants. In this case, the characteristic equation with respect to

(2.43) is

h LAl g 2.70
(p)=p—c—p p+—2’_7 =u (2.70)
From wu(ty) = wug, we obtain
= ut=— v _ ,
v [%’i(le‘m] 2.71)

Yo = (ug—tpr)e P,

However, using numerical simulation for (2.43), we observe that u(t) is asymptotically stable. From

(2.46) and (4.43), the numerical scheme is defined as follows;

vi = (1+cAt+ B(A)2e ;1 + B(AL)? (vige ™ +v; 3¢ + ..+ v;_1e=2])

u; = v;+u*
(2.72)

where v; = v(t;), u; = u(t;) and {t;}7*, is the time grid with a mesh of constant size At, [ is the
discrete-time delay analogue of .

Solution is shown in Figure (2).

0.33

0.32F

o
£
T

=]
3%
T

029t V\k

0281

Expected Yolatility Square

027+

026 1 1 1 1 1
0.2 0 0z 0.4 0.6 0.8 1 i 1.4 16

tirne grid t

Figure 2.: Solution of (2.43) with parameters in Table 2.
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Chapter 3

Parameter Estimation

3.1 Introduction

In this chapter, we find an expression for the forward price of energy commodity. Using the rep-
resentation of forward price, we apply the Least-Square Optimization and Maximum Likelihood

techniques to estimate the parameters defined in (2.2) and (2.34).

3.2 Derivation of Forward Price

Let F'(t,T) be the forward price at time ¢ of an energy goods with maturity at time 7". We define
F(t,T) = Ep (S(T)) 3.1)

where S(T') is defined by (2.1), the expectation here is taken with respect to the risk neutral measure

defined in (2.30).

REMARK 5 At maturity, it is expected that the forward price is equal to the spot price at that time

i.e F(T,T) = S(T). This is the basic assumption of the risk neutral valuation method.

From (2.34), the forward price F'(t,T') can be expressed as

F(t,T) = Ez(Sr)
= Ep (exp[f(T) + z2o(T))) (3.2)
= exp [f(T) + e 7T Day(t) + ¢(t, T)21(t) + @, T) + Y(t,T)]

where Y (¢,T) is define by

_ 12
Urg(t,T,29) + (o — 01)eTg(t, T, p +29) + [ 25| h(t, T, 71,7)

2 )

Y(t,T) = exp

and



1— efa(Tft)
g(t, T,a) = ———  foranya € R (3.3)
a
and ) is defined in (2.71). Hence
log F(t,T) = f(T)+e T ay(t) + ¢(t, T)a1(t) + @(t, T) + T(¢, T)

= f(T)+e 7T (log S(t) — f()) + ¢(t, T)x1(t) + @(t,T) + T (t,T) (3.4
= A(t,T)+ B(t, T)x1(t)
where A(t,T) = f(T) + e 7T (log S(t) — f(t)) + @(t,T) + Y(t,T) and B(t,T) = (¢, T).
Define

e = (i,k,0)

€ = ’ ,C 7_

2 (¥, 0, 8 3.5)
es = (Ao, A1, Az, By, By)

€ - (61762763)7

where € consists of the risk-neutral parameters in (2.2) and (2.34).

We can represent log F'(t,T') as log F'(t,T;€), x1(t) = x1(t;€1), x2(t) = za(t;e2), f(t) =
f(t;€3).

In the following section, we use the Least square optimization approach to estimate the parame-

ters 7, i, & and 9.

3.3 Parameter Estimation Techniques

In this section, we discuss about the estimation of parameters of the stochastic interconnected mod-
els for energy commodity’s spot price (2.14). A numerical scheme is used to develop time-series
model, and using the Least Squares optimization and Maximum Likelihood techniques, we outline

the parameter estimations for our model.

3.3.1 Least Squares Optimization Techniques

For time ¢;, i € {1,2,..., N} = I(1,N), let S(t;) denote the historical spot price of commodity.
For fixed i € I(1,N), F(ti, TJ’) represent an observe future price at a time ¢; with delivery time Tj’
for j € I(1,n;). These data values are obtainable from the energy market.

For each given quoted time ¢;, we obtain 1 (; €1) such that it minimizes the sum of squares

ng

2
sqdiff(t;,€) = > [1og F(t:;, Tl ) —log F(t;, TH| (3.6)
j=1
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where log F'(t;, TJ’, €) is described in (3.4). Differentiating (3.6) with respect to x1 (¢; €1 ) and setting

the result to be zero to get the optimal value of z(¢; €1) as a function of the parameter set, we have

3 [pt6. 7 (I P07 - 40 7))
Z1(t;;€) = ni

> [B 1]

j=1

, i€ I(1,m), (3.7)

Substituting this optimal value into the initial sum of squares (3.6), and summing over the range

of initial times {¢;} and performing a nonlinear least-squares optimization as follows:

. . N n; ) _ . 9
sqdiff(e) = arg mﬁmZ Z [At“T]; + Bti’T;xl(t)(e) —log F'(t;, Tj)| - (3.8)
i=1 j=1

With the obtained €, {z1(t)}, {z2(t)}Y , {f(t)}Y and {S,} are easily computed.

In the case of real-world P-parameters [v, u, x, d] estimation, the estimates of  and « are ob-
tained using a linear regression technique associated with the model dzy = v(k — x2(t))dt +
odWs(t) . (3.7) contains an estimated hidden process 7 (¢;) which is obtained by the least square
minimization approach. This estimated data is used in a regression of a one-factor mean reverting
model dx(t) = p(k — z1(t)) + ddWi(t) to obtain estimates for o and §. We remark that this

procedure is very stable.

3.3.2 Maximum Likelihood Approach

Now, by following the approach in [140] and using Maximum Likelihood approach, the time delay
and the delay volatility parameters «, [ and c are estimated. Our model contains two sources
of randomness, that is, the Wiener process in the equation for log of spot price and another Wiener
process in the equation for expected log of spot price. Therefore, the presented model is an extension
of GARCH model [140]

An outline of the procedure is given below. From (2.40), we have that

do?(t, z2)

2
o =a+f [/t o (s, 22)e 1) dWy(s) + 6 t d)(u,t)dV_Vl(u)] +co?(t, x2). (3.9)
t

-7 t—r
We define the discrete-time analogue value [ to the continuous-time delay 7 as [ = [|£|], where

[|.]] is the floor function, A is the size of the mesh of the discrete-time grid. Hence, we define

& = 0i&

n, = 541 )

(3.10)
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where &, ( are standard normal variate. The discrete-time delayed model corresponding to (3.9) for

volatility is described by
2

!
ol = a+ BAL Z (en—i€” "+ 1n_i(0,4)) | +ro2_y, (3.11)
i=1

wheren =1,2,3,4,..,andr =1+ c.
From (2.39), we further note that
t
/ o (s, 22(5))e T AWy (s) + 6p(s, t)dWi(s) = xo(t) — ao(t — 7)™
t—1
—z1(t = 7)6(0,7) — @(0,7),

that is,

l
VALY " enie 7 4 puid(0,0) = 22(n) — w2(n — De 7 — 21(n — 1)$(0,1) — &(0,1). (3.12)

=1
Define
P(n) = |22(n) — 22(n — 1)e™" — 1(n — 1)$(0,1) — &(0, z)} : (3.13)

This together with (6.1) yields
02 =a+ P, +ro’_,. (3.14)

The solution of difference equation (3.14) is given by

aFy(r) + BGu(r) + Hy(r), n>1+1

o2 = (3.15)
g2 n <1,
where forr =1+ ¢,

n—Il—1

Fo= >, (3.16)
=0

n—Il—1 4

Gn= Y r'P. (3.17)
1=0

H, ="l (3.18)

We observe that the series F), in (3.16) converges if |r| < 1, thatis, |1 + ¢| < 1. Hence,
9<e<. (3.19)

From the definition of ¢, in (3.10), the probability density function f.  of &, is

! Y (3.20)
o exp 22 .

25
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Thus the likelihood function L(a, 3, ¢) of fz, n € I(1, N) for arbitrary large positive integer N is

N
“T1 -2 v
L(O[, /87 C) - o] \/ﬂ(jn eXp |:_ 20_1%:| . (321)

By applying the Maximum Likelihood method, we obtain the estimates «(l), 5(l), and (1) for
[ € I(1,p) for some arbitrary p.

3.4 Some Results: Natural Gas

In this section, we apply our model to the Henry Hub daily natural gas data set for the period
02/01/2001-09/30/2004 [25]. The data is collected from the United State Energy Information
Administration website (www.eia.gov). Using the Henry Hub daily natural gas data set, we present
the calibration results of our model. The parameter estimates of our model for the value of [ = 2
are given. For this purpose, using a combination of direct search method and Nelder-Mead simplex
algorithm, we search iteratively to find the parameters that maximizes the likelihood function. All

codes are written in Matlab.

Table 2: Estimated Parameters of Henry Hub daily natural gas spot prices [25] for the period
02/01/2001-09/30/2004.

5 I R ) T « B c
1.8943 1.0154 1.5627 036 0.008 0.433 -0.07 -1.5

Table 2 shows the risk-neutral parameter estimates of Henry Hub daily natural gas data set [25] for the period
02/01/2001-09/30/2004.
The next figure shows the graphs of the real spot natural gas price data set [25] together with the

simulated spot price S(t).
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Real and Simulated Spot Prices

a Real Spot Price b Real Spot Price
10 ( ) Simulated Spot Price 10 ( ) Simulated Spot Price [
Simulated Mean Level

Real Spot, Simulated Spot and Simulated Mean Prices

Price (dollars)
Price (dollars)

1 1 . . . . . 1 L 1 . 1 . . . . . 1 L
1] 100 200 300 400 500 GO0 FOO 800 900 1000 1] 100 200 300 400 500 GO0 FOO 800 900 1000
tirne t (days) tirne t (days)

Figure 3.: Real, Simulated and Forecasted Prices.

Figure 3 (a) shows the graphs of the real spot natural gas price data set [25] together with the simulated spot price
S(t). Figure 3 (b) shows and the the graphs of the real spot natural price data set together with the simulated spot price
S(t) and the simulated expected spot price exp(z1(t)). We notice that in Figure 3 (a), the simulated spot price captures
the dynamics of the data set. This shows that the simulation agrees with our mathematical model. Another observation
is that the simulated mean level seems to move around the value 4.80 which is close to exp(k) = exp(1.5627). This

confirms the fact that < is the equilibrium mean level.

Graph of volatility
0.5374 T T T T T T T

06374 q

05373 q

ity (6)

05373 q

063721 q

05372 . n L . L L . L L
0 100 200 300 400 500 /OO FOO GO0 200 1000

tirne t (days)

Figure 4.: Simulated o (¢, x2(t)).

Figure 4 shows the plot of volatility o (¢, z2(t)) with time. It is clear from the graph that the solution is non-oscillatory.

This is because Lemma 2.3 (i) is satisfied using the parameter estimates in Table 2.
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Chapter 4
Non-Linear Stochastic Modeling of Energy Commodity Spot Price Processes with Delay in

Volatility

4.1 Introduction

In real world situation, the expected spot price of energy commodities and its measure of variation
are not constant. This is because of the fact that a spot price is subject to both deterministic and
random environmental perturbations. Moreover, some statistical studies of stock prices [8] raised
the issue of market’s delayed response. This indeed causes the price to drift significantly away
from the market quoted price. It is well recognized that time-delay models in economics [41] are
more realistic than the models without time-delay. Continuous-time and Discreet-time stochastic
volatility models [9, 38] have been developed in economics. Elloit et al [37] developed a model
for pricing variance swaps and volatility swaps under a continuous-time Markov-modulated version
of Heston’s stochastic volatility model. Recently, in a survey work, Hansen and Lunde [46] have
estimated these types of models and concluded that the performance of the GARCH(1,1) model is
better than any other model. Furthermore, Cox-Ingersoll-Ross(CIR) developed a mean reverting
interest rate model that was based on the mean-level interest rate with exponentially weighted in-
tegral of its past history, the relationship between level dependent volatility and the square root of
the interest rate [19]. Employing the Ornstein Uhlenbeck [126] and Cox-Ingersoll-Ross(CIR) [19]
processes, Heston developed a stochastical model for the volatility of stock spot asset.

In this work, using basic economic principles, we systematically develop interconnected stochas-
tic nonlinear dynamic model for the log-spot price, expected log-spot price and volatility processes.
The effort is made to utilize the developed interconnected stochastic model to analyze the Henry
Hub daily natural gas data set. The by-product of this led to the development of discretized ex-
pected square volatility model and a modification of The Kalman filter approach. This has been
achieved by treating a diffusion coefficient parameter in the non-seasonal log-spot price dynamic

system as a stochastic volatility functional of log-spot price.
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The organization of this study is as follows:

In Section 4.2, we developed a stochastic models for energy commodity’s spot price. We extend
the linear interconnected deterministic and stochastic models in (2.14) to non-linear interconnected
deterministic and stochastic models. In Section 4.3, the derived model is validated. In Section
4.5, by outlining the risk-neutral dynamics and pricing, risk-neutral dynamics of presented model is

derived.

4.2 Model Derivation

The principles of demand and supply processes suggest that the price of a energy commodity will
remain within a given finite lower and upper bounds. Let k1 > 0 and k2 > 0 be the expected lower
and upper limits of the nonseasonal log of spot price, respectively. In a real world situation, the
nonseasonal log of spot price is governed by the spot price dynamic process. In the following, we
outline the development of dynamic model for the nonseasonal spot price processes. Let xo(t) be
the nonseasonal log of spot price at a time ¢. In this case, ko characterizes the fixed cost, (x2(t) +
k1)(kg — x2(t)) characterizes the market potential for xo(t) per unit of time at a time ¢. The market
potential is induced/generated by the underlying market forces on the nonseasonal log spot price,
x2(t). This leads to the following principle regarding the dynamic of price x5(t) of energy goods.
The change in nonseasonal log spot price of the energy commodity Axo(t) = zo(t + At) — z2(t)
over the interval of length |At| is directly proportional to the product of the market potential price

and the length of the interval.
Axa(t) o (x2(t) + K1) (K2 — x2(t))At. 4.1)

This implies
dxz(t) = "}/(.TQ(t) + Hl)(fﬁg - LL’Q(t))dt, (4.2)

where + is a positive constant of proportionality, dxs and dt are differentials of x5(t) and ¢, respec-
tively.

We note that (4.2) has a unique non-zero equilibrium 3. Moreover, we observe that whenever
the price lies above kg, there is a tendency for the price to fall and whenever the price is below ko,

the price rises back. Hence, k9 is the equilibrium of (4.2). Hence

lim z5(t) = K2 4.3)

t—o0
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In the real world situation, the upper price limit of the nonseasonal log spot price sz is not a constant
parameter. In the following, we employ the argument of Bernard and Thomas [8] to incorporate both
the response time delay and random environmental perturbations into the measure of variation of

the log-spot price process of energy commodity. Therefore, we consider
Ko = 21(t) + e2(t), (4.4)

where es is a white noise process that characterizes the measure of random variation of the log
spot price, x1(t) describes a mean of non-seasonal log spot price process and it is assumed to be

governed by a similar differential equation described in (4.2), that is,
dxi(t) = p(x1(t) + K3) (k2 — x1(t))dt, 4.5)

where 1 is a positive constant of proportionality.

Moreover, the mean non-seasonal log spot process is subject to random environmental perturba-
tions. By following the argument used in (4.4), we assume that k3 is subject to random perturba-
tions:

K3 = Ko + €1, (4.6)

where kg is constants, and ey is a white noise and it describes the measure of random influence on
the mean non-seasonal log-spot price.

Substituting (4.4) and (4.6) into (4.2) and (4.5), respectively, we obtain

dz1(t) = p(x1(t) + ko)(k2 — 21(t))dt + p(ke — x1(t))eq (t)dt,
dra(t) = y(@o(t) + £1)(z1(t) — z2(t))dt + y(x2(t) + K1)ex(t)dt.

4.7

Using (4.7) and following the argument of Bernard and Thomas [8], we incorporate both the
response time delay and random environmental perturbations into the measure of random variations
on the log-spot price process of energy commodity. This leads to the establishment of a stochastic
model for nonseasonal log spot price and expected log-spot price processes that is described by the

following non-linear system of stochastic functional differential equations:

dry = pl(x1+ ko)(ke — 21)dt + 0(k2 — 21)dWi(t), @1(to) = =10, (4.8)
dry = (w2 + k1)(21 — 22)dt + 0 (t, 2at) (2 + K1)dWa(t), Ty, = o2,
where
pei(t)dt = SdWy(t) (4.9)

vea(t)dt = of(t,zor)dWa(t),
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and 0 > 0, xo; is a segment of continuous function x5 defined by zo.(6) = x2(t + 0), 6 € [—7,0]
fort > 0, o is a functional defined on [0, 7] x C[[—7, 0], R] into R.

For the sake of validity and completeness of mathematical model (4.8), we assume the following:

Hy: 29(0) = 22(t +0), 0 € [-7,0], 2; = 9 € C[[—7,0], R?] defined as z:(0) = z(t + 0) =
[21(t+0), 22(t+)]", 7>0,7>0, >0,k >0,k >0,60>0,6>0, 0:[0,T]xC— R,
is a Lipschitz continuous bounded mapping, C is the Banach space of continuous functions defined
on [—, 0] into R equipped with the supremum norm; W (¢) and Ws(t) are standard Wiener process
on a filtered probability space (€2, F, (F):>0, P), the filtration function (F);> is right-continuous,
and each F; with ¢ > 0 contains all P-null sets in F.

By following the idea of [140], we define the continuous volatility version of the GARCH type
model as:

t

-7

2
dO’Q(t,ﬁg) = (Oé + CO’Q(t,Q92> + ﬂ [/ U(S,ﬁg)dW3(8):| ) dt, 0'2(t0,1902) = 08(1902) (4.10)
t

where «, f € Ry, ¢ < 0, and W3 is a Wiener process..
From (4.8) and (4.10), the overall stochastic dynamic model for nonseasonal log spot price, ex-
pected log-spot price and volatility processes under random perturbation is described by the follow-

ing non-linear system of stochastic functional differential equations

da:l = u(.%'l + Ho)(/ﬁ;g — xl)dt + (5(%&2 — .%'1>dW1(t), wl(to) = X10,

dzo = ’)/(.7}2 + Hl)(iﬁl — $2)dt + O‘(t, wzt)($2 + Kl)dWQ(t), Ttgy = P2,
2

do’Q(t7192) = (a +Co'2(t,192) +B [ﬁt_TU(s,ﬁﬂde(S)} > dt,

0'2(t0, 1902) = 0'3(1902).

4.11)

4.3 Mathematical Model Validation

In this section, we validate the mathematical model derived in Section 2. We note that the clas-
sical existence and uniqueness theorem is not directly applicable to (4.8). We need to modify the
existence and uniqueness results. The modification is based on Theorem 3.4 [57] and the usage of
linear invertible transformation. For this, we first transform the systems of nonlinear stochastic sys-
tem of differential equations (4.8) into a geometric mean reverting non-linear stochastic systems of

differential equations. We show the global existence of solution process of transformed systems of
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differential equations. From this, the solution of the geometric mean reverting non-linear stochastic

system follows immediately.

LEMMA 4.1 Using the transformation

T — K
o). { " o (4.12)
Y2 T2 + K1,
-k
. {7 o (4.13)
P2 o + K1,
we have dy;(t) = dx;(t) and hence, the system of (4.11) is reduced to
dy1 = —pyi[M +yildt — 0y dWi,  yi(to) = o,
dys = yy2(Ae +y1 — yeldt + o (t, y2r — K1)y2dWa, Yig, = P02
2 4.14)
do?(t, o2 — K1) = <a + co?(t, 02 — K1) + 3 |:j;ft77' o(s,p2 — “1)dW3(5)] ) dt,
o2(to, o2 — k1) = 0§ (Vo2),
where
A = Kotk
! o (4.15)
Ay = K1+ Ko.

In the following, we give the existence and uniqueness conditions for solutions of the IVP (4.14).
We recall that system of stochastic differential equations (4.14) does not satisfy the classical
existence and uniqueness conditions. However it does satisfy the local Lipschitz condition. We
construct sequences of functions for the drift and volatility parts of (4.14) such that the classical
existence theorem conditions are valid for a sequence of modified rate coefficients defined on a
cylinder [tg, 00) x Uy, for tg € R, n € {1,2,3,...}, where U,, are modified sequence of rate

functions defined as:

Un ={lylo <n}, (4.16)
bi(t,01(0)) = —pp1(0)(Ko + K2 + ¢1(0))
ba(t, 02(0)) = 792(0)(¢1(0) = ¢2(0) 4 k1 + K2)
bs(t, p2) = a+co’(t,ps— K1)+ B Uf_T o (s, p2 — K1)dWs3(s) ’ (4.17)
o1(t,1(0)) = —dp1(0)
oa(t,p2) = ot 0)e2(0)
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)7

where ¢ = (1, p2 ¢lo= sup |p(s)|, ¢; € C[[-T,0],R?], fori = 1,2, and

—7<5<0
n b1(t, 1(0)) for |plo <n
b (1, 01(0)) = (4.18)
b1(t,n) for || >n
n o1(t, 1(0)) for |plo <n
o (t,¢1(0)) = (4.19)
o1(t,n) for |plop > n,
ba(t,2(0)) for |plo <n
b5 (¢, 2(0)) = (4.20)
ba(t,n) for |plo >n

oa(t, ) for [plg <n
{7 (1, py) = 4.21)
oa(t,n) for |plo > n,

b5 (8, 02) = ba(t, p2) ¥ 1 (4.22)

Using the sequence of functions (4.18 — 4.22), the modified system of stochastic differential equa-

tions (4.14) is described by

dy™ = bty "yat + o (&, ") dW, yi(to) = ¢1(0),
dy$™ = (e, y$™ydt + oS (4, SV AW, ya(to) = poa, (4.23)
do?(t,9)™ = b, y$™Vdt, o2(to, po2) = 02 (02)-

Hence, from (4.18)-(4.22) and assumption Hj, system (4.23) satisfies the classical existence and
uniqueness conditions [57]. Therefore, there exist a sequence of Markov process y§n) and yén)
corresponding to equation (4.23). Next, we show that the global solution of (4.14) exists. For this

purpose, we need to utilize the following concepts.

DEFINITION 4.3.1 Define Tl(n and T, "’ to be the first exit time of the process y; ' (t) and yén) (t)

from the set |y1| < n and |ya| < n respectively, that is

7™ —inf{t >0 : |y(t)| =>n}, i=1,2. (4.24)

)

(n)

Define 11 and T to be the (finite or infinite) limit of the monotone increasing sequence T, and

(n)

Ty  respectively as n — oo.
7= lim 7" =inf{t >0 : |yi(t)] €[0,00)}, i=1,2. (4.25)
n—oo
A process X (t) is regular if for any (s,z) € I x R,
P{tr =00} =1 (4.26)

where T is the limit of the first exit time T,.
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Using Theorems 3.4 and 3.5 of [57], we show that the process y(t) = {y1(t), y2(t)} is regular.

To do this, we cite the Theorem and show that the conditions in the Theorem are satisfied.

THEOREM 4.1 (Theorem 3.5) [57] Suppose that the local solution of (4.23) exists on every cylinder
[to,00) x U, and, moreover, that there exists a nonnegative function V. € Cgy such that for some

constant ¢ > (

LV <cV

4.27)
Vi, = inf V(t,y) = o0 as n — oo,
ly[>n
where the L-operator is given by
L-4 +§l:b(”)(t Yo Zl: Doy — @)
= — i , " — Ui O . s n ) .
ot i=1 Oy 2i,j:1 ’ 8.%( )8yj :

Then, for every random variable x(to) independent of the process W;(t) — W;(to) there exists a so-
lution y(t) of the system of stochastic differential equation (4.14) which is almost surely continuous

stochastic process and is unique up to equivalence.

Proof. We utilize the structure of system (4.23) and establish the conclusion of the theorem for the
first component of (4.23), followed by the second component by knowing the nature of the third
component of (4.23) in Appendix A.1.

We define a new stochastic process 7 (t) as
-~ (n) f < (n)
=1, , for t <713, (4.29)

We show that condition (4.26) is satisfied for yi, thereby making the process y1(t) to be almost
surely defined for all ¢ > .
We define a nonnegative function V; on E = [tp, 00) x R, into RT as follows;

(rotr2)
u(rkg+ro) 52 M(HO + K;Q)(l + Ko + K‘Q) 5 ?52 2241

Y1
Vit,y) = 241 2 du+
1t w) /0 (u ) T o+ ko 62 4+ p(ko + K2)

(4.30)

It is obvious that V; € C1 2. Moreover, the L-operator with respect to the first component of system

of stochastic differential equation (4.14) satisfy

u(rgtrg) p(rgt+r2)
LVi = —p(ko+ra)unyi +1) & —miGi+1) &
ulrotrg) 4 u(rgtrg)
< plro+r)Wi + DI +1) @ —uyii 1) 2
p(kp+r2)

= p(ko+r2 —y)(yi +1) &
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Case 1: If kg + K2 — y? < 0,then LV; <0 < V4.

Case 2: If kg + Ko — y% > 0, then —\/kg + Ko < y1 < /Ko + K2 and

(g +np) 52 (o + ) (1 + fip + ia) ] 521
2 2 plrgTHR2) 1240 K9 R0 K9
Ko + Ko — +1 52 < ,  (4.31
M( 0 2 yl)(yl ) Ko + Ko 524_”(’%0_’_%2) ( )
. . p(ro+r2) . .
since the function f(z) = p(ko + k2 — 2%)(2® + 1) s has a maximum point at z =
(ko+r2)d2
\/“0 52 = leotRa) T
Hence, LV; < V3.
Thus, in both cases,
LV, < V. (4.32)
Furthermore,
Vln = inf Vi(tvyl)
ly1|>n ( )
m n0+n2
L png o gy Mege) 52 [ulkotro)(Itrotns)]™ 62 11
= L @+1) 9 dut S | P e ) 2} — 00 asm — 00.
(4.33)
To show that 4 () is regular, we define a function
Wi(t,y1) = Va(t,y1) exp{—(t — to)}, (4.34)

From (4.32), we note that LWW; < 0. By defining Tl(”) (t) = min(Tl(n), t) and imitating the argument
of Lemma 3.2 of [57], we have

E(Vi(r{™ (#), 1 (7" (1)) < OBV (0, 11 (t0)).

Hence

(t=t) BV (to, y1(to))
inf ‘/1 (U, yl)

ly1|>n,u>to

7){7-1(") <t} < € — 0 as n — oo by (4.33). (4.35)

Thus, using (4.26) and (4.35), the global existence and uniqueness follows by letting n — oo.
From (4.29), we conclude the global existence of y; (¢) of (4.14) which is an almost surely unique

continuous stochastic process. Hence, using (4.12)(a), we can also show that there exist the global

solution x1 () of sub-system of (4.8) which is an almost surely continuous and unique stochastic

process .
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For the proof of the global existence of solution y2(¢) of the second component of (4.14), we
show the existence of solution o2(t, x9;) of the third component. The existence and uniqueness of
02(t, x9;) follows from Theorem A.1 in Appendix A.1.

For the proof of the existence of y2, we note that from the boundedness of functional o (¢, 2) and

the minimal class of functions [72], we have

[l (t, D) < 0/ [02(0)]; (4.36)

for some positive constant 17 > 0. From the proof of global existence and almost sure stability of

first component of (4.14), we assume that
(B <M Y t >t (4.37)

for some positive constant M. For the proof of the global existence of ys, we define a non-negative

Lyapunov function

Y2 Ty - 1
V) = [ s o (303405 |00+ 4 lnl - 58] )
0 Y2€[0,2(M+r1+£2)] 2
(4.38)
The L-operator with respect to the second component of (4.14) is given by
2 o2 t, —K o
LVy = (s — g2+ k1 + ka)(u + 137 7 T2 T g gl

2n?
< B 2 0 13 4 L2 4 1) 20 2
< yye(yr —y2 R+ R2) (g2 +1)27 + S (y + 1) 27 3

2

\V)

e
2

1
= (y3+ 1) —§y§+yz(y1+m+m)

Case 1: If—%yg + y2(y1 + k1 + k2) < 0,then LV, < 0 < Vs

Case 2: If —3y3 + ya(y1 + K1 + K2) > 0, then 0 < [yo| < 2|y + K1 + Kal.

Since continuous functions on closed intervals are bounded, then the function f(y2) = v(y3 +
1)# [—%yg + yo(y1 + k1 + Rg)] is bounded on the interval 0 < yo < 2(M + k1 + k2). Hence,
for yo € [0,2(M + K1 + K2)],

LV,

IN

2 Ll 1
y(yz + 1) 5V +y2(y1 + K1 + K2)

IN

o T 1
Y(ys +1)277 [_293 + |yo| (M + K1 + m)}

IN

Va.
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Furthermore,

Vo, = inf Va(t,u2)
ly2|>n
= nuz—&—l#du—i— ma < 2—1—1# M4k +k —12).
Jo (w?+1) eooiax (s + 1) ( 1+ K2)ye — 593]
(4.39)
It follows that V5, — oo as n — oco. By defining
Walt, o) = Va(t,ya)e 1), (4.40)
we have
(n) e ORV; (t, ya(to))
P{ry’ <t} < — 0 as n — oo by (4.39). (4.41)

inf Vv?(ua y2>
ly2|>n,u>to

Thus, the global existence and uniqueness of solution of the second component of (4.14) follows
by letting n — oo. Hence, there exist a global solution (y;(t), y2(t)) of the system of non-linear

stochastic equation (4.14). ]

Using transformation (4.12), it can be easily deduced that there exist a global solution (z(t), z2(t))

of the system of non-linear stochastic system (4.8).

4.4 Closed Form Solution Under P

We observe that the system of stochastic non-linear differential equations (4.8) is a Ito-Doob stochas-

tic Bernoulli type stochastic differential equations [70]

dy = [P(t)y + QMY + gTQ(t)an—l] dt + [S(t)y + Y(£)y"] dW,2) (4.42)

for any n # 1, where P, @Q, Y and Y are continuous functions.

To find solutions 1 (¢) and y2(t), we imitate the procedure [70] for finding the implicit-closed
form solution processes of first two components of non-linear stochastic differential equations in
(4.14).

We consider an Energy/Lyapunov function

1
Vi t, i) = — ) for 1 = 1,2, i(t 0, 4.43
(t, yi) e yi(t) # (4.43)
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Hence, applying It6’s formula to (4.43), we have

dVy = [(pA1 4 0%)Vy + p] dt + 6V1dWi (t)
dV2 = [(_’Y(AQ + n (t)) + UQ(ty 902))V2 + ’y} dt — U(t, Y2 — Hl)VQdWQ(t).

(4.44)

Using the techniques described in [70], the implicit solution to system of differential equation
(4.44) 1s given by
Vi(t,y1) = ¢i(t.to)er +p [y é1(t s)ds 4.45)
Va(t,y2) = ¢a(t,to)ez +7 ffo P2(t, 5)ds

where

¢1(t,to) = exp [(u(r2 + Ko) + 56%) (t —to) + 6 (Wi(t) — Wi(to))]

$2(t,to) = exp M (=v(y1(s) + X2) + 302(s, Y25 — k1)) ds — ft (8,25 — k1)dWa(s )] :
(4.46)

and ¢;, 1 = 1, 2 are constants.

Comparing (4.43) and (4.45), we have

-1

ui(t) = [o1(t, to)er + p J}, 61, 5)ds]

- (4.47)
1o(t) = [Ba(t, to)e + 7 J}, 6t 5)ds]

Hence, using transformation (4.12) together with the initial condition y;(t9) = y10 > 0, y2r, =

o2 > 0, we have

T (t) {iiét tISQ + MJ;O ¢1 ) 3:| + Ko

1 (4.48)
ea(t) = [T+ [l oalt )| — .

REMARK 6 It is obvious from (4.47) that y; > 0 for ¢ = 1,2. Also, ¢1(t,tp) is a log-normal
random variable log N ([(1u(ko + k2) + 562)] (t — to), 02(t — to)). Hence

Ep¢i(t, to) = exp [(u(ko + K2) + 8 (t — to)] - (4.49)

By Jensen’s inequality, we have

-1
Ep (0] > [Ep (%50 + [y on(t.s)ds) |
= [(y—}o + W) exp [(u(ko + K2) + 6%)(t — to)] (4.50)
_é] !
pw(ko+r2)+62
Hence,
Jlim Ep [ly1(8)]] >0 (4.51)
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Also, since

-1
ut) < [M] , 4.52)
Y10
we have
Ep [y1(t)] < yro exp(—p(ro + K2)(t —to)). (4.53)

Hence, by Squeeze theorem, from (4.50) and (4.53),

Jim Ep [y1 ()] = 0. (4.54)
Consequently, using (4.12), we have
tllglo Ep [z1(t)] = K. (4.55)

This establishes the fact that 21 (¢) describes the mean of non-seasonal log-spot price.

We can also evaluate the area under the curve y;(t) from ¢, to ¢. To do this, we re-write (4.47) as

o7 (t,t0)yo1

yl(t) = 1+'uy01 ftto ¢;1(8,t0)d8 (4 56)
ya(t) = — b2 (to)gon '
2 14702 ftto b5 ' (s,to)ds”
It follows immediately that
t 1
/ y1(s)ds = —In [1 + uyo1 gi)l L(s, to)d } (4.57)
to 2
t 1
/ ya2(s)ds = 5 In [1 + Y02 <z52 (s, to)d ] (4.58)
to

Hence, applying Fubini’s theorem, using the concavity of logarlthmlc function, and the facts that

Ep¢y(t,to) = exp [—p(ko + k2)(t — to)] ,

(4.59)
Epgy” (t,t0) = exp [ [, (Eply(s)] + Ae)ds] .
and Ep[y1(t)] < y10 (from (4.53)), we have
ftto Eplyi(s)lds < 4 In -1 + HEp[yor ftz Ep(¢1" (s, to)]ds} :
< lm 1 + Zeluol (7 _ e*“("GOJF”?)(t*to))} , oo,

1 +vEp[poz ffo Ep[¢y (s, to)]ds} ;

1 + Erliel (o onia)i—to) )],

Jio Eply2(s)]ds

IN

Q= 2= Bl Te
—
=

IN
:T

In addition to the above outlined results, we present a few more properties of y; and y».
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THEOREM 4.2 If~y — @ > 0, then

_ 2 ) -1
Ep[yg(t)] < 2y —n )+ <f0— o 2y —n >67(m+m+M)(tto) , (4.61)

T 12v(k1 FRo+ M K1+ Ko + M)

where M is defined in (4.37), where fo = m\t:to.
2

Proof. Using the fact that yo > 0, define the Lyapunov function v : [tg,00) x Ry — RT by
v(t,y2) = . (4.62)

Then from (4.14)
dv = Lodt + 20 (t, yar ) vdWa(t), (4.63)

where the operator L is define as

2

L= % +yy2(k1 + K2+ Y1 — yz)aay2 + ;02(t,yzt)y§8y%- (4.64)
Using (4.36) and (4.37), the operator L satisfies
Lo < —(2y — n2)v2 + 2y(ky + kg + M), (4.65)
Define u(t) = Ep(v(t,y2(t))). By applying Theorem 4.8.1 of [66], we obtain
E[v(t, y2(t))] < u(t, to, uo), (4.66)
where u(t, to, up) is a solution of
du(t) = [—(27 —)ub(t) + 2y(k1 + Ko + M)u(t)] dt, (4.67)

Thus,

27 B 7]2 2")/ — 772 -2
Ep(s3(t)) < { -+ ( - ) e-y(mmmm_to)} |

2’}/(/11+:‘£2+M H1+/€2+M)
(4.68)
By using Holder’s inequality, inequality (4.61) follows .
0
THEOREM 4.3 Ifdvy(k1 + Ka) > (2v + 3n?), then
1
Ep(ly2(t)[] = (4.69)

1 B —ai(t— B
\/(@ag—ai)@”“ R
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where
51 = 7+ %7727

a1 = 2v(k1+ k2) — P1.

(4.70)

Proof. Using the fact that yo > 0, define the Lyapunov function v : [tp,00) X Ry — R by

1
v(t,y2) = —5. 4.71)
Y2
Then from (4.14) and (4.36), using the fact that y% < y% + 1, we have
2
2 3 5 2
dv. = |=—[vy2(k1 + K2 +y1 — y2)] + 507 (L, Y2t — k1) | dt — —0(¢, Y2t — k1)dWa(2),
Ys Y3 Ya
< [—OqV + ﬂl]dt — 2V0’(7f, Yot — K/l)dWZ(t).
Thus,
d(ve®?) < Bre®tdt — 2vo(t, yar — k1 )dWa(t).
Hence,
Ep[v(t)] < <v0 - 61) emonti=to) o O1
(05} a1
Applying Jensen’s inequality, the result follows. g

4.5 Risk-Neutral Dynamics

In this section, we present a risk-neutral dynamic model corresponding to (4.8).
DEFINITION 4.5.1 A probability measure P is said to be risk-neutral if

o P and P are equivalent ( that is, for every A € F, P(A) = 0 if and only if P(A) = 0), and

e Under P, the discounted price D(t) is a martingale.

We shall use this definition to find a risk-neutral dynamics for our model (4.8).

Define the riskless asset

t
B;(t) = exp [/ m-(s)ds} , t€]0,T], 1=1,2 (4.72)
to
where r;, 1 = 1, 2 are the interest rate function.
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Using the first two components of (4.14), define the discounted price of y;(t) = z1(t) — Ko,
y2(t) = 2(t) + K1, by

¢i(0) [ / ' ]
D;(t) = =exp |— r;(s)ds| y;(t). 4.73)
M=% [ (o) (o)
Applying Ito’s Lemma to (4.73), we have
dDy = —4D M gy g vy (1) W
ADy = olt,yx — k1)Dy | TUEERER T2 g a1
Define the market price of risk
0, = plrotre+y1)+r1
° (4.75)
9, — yitritra—yo)—r
2 o(tp2—r1) ’

where ;, 7 = 1, 2 are as defined in (4.15).
Using Girsanov’s theorem, we obtain the following result concerning the change of probability

measure.

THEOREM 4.4 Suppose that 0;, i = 1,2 satisfy the Novikov’s condition [108], with the P-Wiener

process
Wit) = Wilt)+ [ 61(u du,
71() 1(t) ftto 1(u) “4.76)
Wg(t) = Wg(t) + fto Gg(u)du
Then D;(t) is a positive local martingale with respect to P, and is given by
Di(t) = Djpexp|—2 b §2ds — [F sdW; (s
(0 = a4 o

Dg(t) = Dsgexp [—% fti) 02(37 Yas — Iﬂ)ds + ftto U(S, Y2s — Hl)dWQ(S)] .

Substituting (4.76) into (4.14), we notice that first two component of (4.14) reduces to a geometric

stochastic equation given by

dyy = ri(t)yrdt — 6y dWh

B (4.78)
dys = ro(t)yedt + o(t, y2s — K1)y2dWs
Using transformation (4.12), (4.78) reduces to
dvy = —ri(k2 —x1)dt + (s — 21)dWy (4.79)

dre = ro(m2+ K1)dt + o(t, ze)(z2 + K1)dWo
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Chapter 5

Parameter Estimation

5.1 Introduction

In this chapter, we present the estimation scheme to estimate the parameters in the interconnected
system of nonlinear stochastic differential equation (4.11). We use discretized Scheme for Continuous-
Time GARCH Model to develop the Maximum Likelihood techniques. the developed techniques is
used to estimate parameters in the model for volatility process in (4.11). Furthermore, modifying
the extended Kalman filter technique, we estimate the parameters in the model for log-spot and
expected log-spot price in (4.11).

The Kalman Filter is a powerful and widely used technique in state and parameter estimation
problems. It is used for finding minimum mean squared error (MMSE) estimation of linear state
dynamic systems and observations [115]. Nonlinear state dynamic and observations are estimated
by employing the Extended Kalman Filter (EKF) scheme [115]. Moreover, the EKF scheme deals
with state and parameter estimation of linearized version of both nonlinear state dynamic and ob-
servations [73]. It is well known [78] that the linearized Taylor scheme does not provide sufficiently
accurate representation. Moreover, due to its overly crude approximation, the scheme generates
problem in convergence [78].

Several other approaches have been made to find a better filter than the EKF scheme. Unlike
the usual EKF approach, Magnus [78], Tor Steinar [124] and Luo [75] propose a new set of esti-
mators which are based on polynomial approximations of the nonlinear transformations using the
Stirling’s interpolation formula. Under this scheme, derivatives of rate functions are avoided due
to interpolation approximation formula. As discussed in [78], the Stirling’s interpolation formula
accommodates easy implementation of the filters and enables state estimation when the derivatives
are not smooth. It has been remarked that this approach provides a similar, or superior performance
than the existing EKF approach. Simon Julier [113, 114, 115] claims that the EKF filtering strategy

is difficult to implement, difficult to tune, and only reliable for systems which are almost linear. This
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leads to the development of a new linear state and covariance estimator using unscented transfor-
mation. The new scheme was claimed to be superior than that of the EKF, and, in fact, the scheme
generalizes elegantly to the nonlinear system without the linear step required by the EKF scheme.
Higher filters have also been discussed by Jazwinski, [53], Maybeck, [81], and Madsen etal [76].

Our main focus in this paper is to reduce the magnitude of error that occurs during the estimation
process of the EKF approach. This error is due to the overly simplified approximation scheme.
In the process of the error reduction, we modified the Extended Kalman Filter scheme by incor-
porating second order polynomial approximation for the expected state variable and covariance.
This scheme is applied to study the state and parameter estimation problems of nonlinear system of
stochastic differential equation. The drift and diffusion part of the nonlinear differential equations
are approximated using the Stirling’s interpolation formula [78]. This modified approach estimates
the parameters of a system of nonlinear stochastic differential equation with lesser magnitude of
error compared to the usual EKF approach [73]. Although the magnitude of error in the state and
covariance of the EKF is reduced, it is however important to note that our scheme is computationally
too demanding/computer intensive. An algorithm is developed to implement this scheme. The ex-
tended Kalman filter approach is compared with the developed modified extended Kalman filtering
approach. The scheme is applied to Henry Hub natural gas data and to estimate parameters. The
details are exhibited in the graph.

The organization of this work is as follows:

In Section 5.2, we present the discretized scheme for continuous-time GARCH Model. In Section
5.3, we present a modified EKF scheme. In Section 5.4, we applied the scheme to estimate the

parameters for a stochastic dynamic model for Henry Hub Natural gas.

5.2 Discretized Scheme for Continuous-Time GARCH Model (4.10)

In this section, we formulate a discretized scheme and outline a procedure for estimating the param-
eters o, 3, 7 and ¢ in (4.10). An outline of the procedure is given below:

Define the discrete-time delay value [ to be the analogue of the continuous-time delay 7. Given
the value of [, we define the size of the mesh of the discrete-time grid as A = % Furthermore, we

define
& = 0i&i, G.D

where &; is a white noise process. The discrete-time delayed model corresponding to (4.10) for
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volatility is described by

+qo;_;. (5.2)

l
EL =oa+ ﬁAt [Zenl

=1

02 =opfori € [~7,0,andg=1+c.

Since ¢, is a normal random variable with mean 0 and variance o?

> we can write

!
D eni= (5.3)
i=1
where ¢ is a standard normal variable. Hence, (6.1) reduces to
l
UEL =a+ ﬁAtZ ai_ieQ + qai_l, (5.4
i=1
Using the fact that €2 is a x2(1) random variable, we find the probability density function
f(o2lo2 .1 <i<l)ofo2 giveno? ;1 <i<ltobe
2 -1 2
0n — o — (o, 2 0n —Qa—qo
(2]anz,1§i§l):( 171) exp |— i ,atqo?_| < o2 < oo.
\/2mBAL Z o2, pAt Zl on
i=1 =
(5.5)
We define the Likelihood function of o2 as
N
=log [ [ flea|ts, 0% ;1 <i<1) (5.6)
where I3 = {a, 3, q} are the parameters to be estimated. Thus,
N o2 — 2
S Z N i S Z Wnt | 5.7)
n=1 2w BAL Z o2, =L BAt Z o2,

Our aim is to find estimators that maximize the Likelihood function (5.7) subject to the constraint
(2.49).
Hence, solving for the maximum-likelihood estimators &, B and ¢ of «, B and g respectively, we

have




and &, ¢ satisfies

1 N 0_2 N 0_2
n—1 n—1 _
9 Z 2 _ 4 — 02 + Z . 1 = 0
o a—qo;_ 9
n=1 n=1| BAt S 02
=1

respectively.

To evaluate the parameters, we generate the observation data for o (¢, ¥2) from the discrete version
of (4.14) described as

Ay

yZ = y(k1 + K2 +y1 — Y2) At + o (t, yor) AW, (5-8)
We achieve this by using ys as our observation data. We search iteratively to find the parameters
that maximize (5.7) using a combination of direct search method and the Nelder-Mead simplex
optimization algorithm in Matlab. This completes the parameter estimation problem of (4.10). The

parameter estimated are recorded in Table 3.

Table 3: Estimated Parameters of o2(¢,92) for [ = 2 using the Henry Hub daily natural gas spot
prices for the period 01/04/2000-09/30/2004 [24].

« I5} c T

0.07 1.149 -1.4814 0.005

5.3 Modified Extended Kalman Filter Approach

In this section, we shall be estimating the remaining parameters j, Y, ko, K1, K2 and § of (4.8) using
the Modified Extended modified Kalman Filter Approach. This is accomplished by approximat-
ing the state estimator using a quadratic approximation. The Kalman Filter Approach is modified
by employing a second order approximation for state and state variance predictions. To estimate
the parameters, we minimized the likelihood function of the prediction error of the measurement

process. The approach is described below.
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We assume that a dynamic state x € R"™ and its observation data y € R"™ are described by a

general non-linear stochastic dynamic systems.

.
8
I

f(z;0)dt + g(x;0)dW(t), z(to) = zo
y(t) = h(z;0)+v(t),

(5.9

where z is a stochastic initial condition satisfying E|xo|? < oo, f: R* x RP — R", g : R" x RP —
R4 h : R™ x RP — R™ are continuous functions, W : R — R is a d— dimensional standard
Wiener process on a filtered probability space (€2, F, (F)>0, P), the filtration function (F)¢>q is
right-continuous, and each F; with £ > 0 contains all P-null sets in F, = is F; adapted process and
non-anticipative, and v : R — R" is a n— dimensional zero mean Gaussian white noise process
independent of W, 6 € ©, the parameter space.

Prior to presenting a procedure for the estimation of parameters, we define the following termi-
nologies and notations used throughout this work.

Define

Y%k = {ytlvyt27"'7ytk}7 (510)

as all observations of the data given up to time tj.

J(tlte—1) = Ey@)|Yi_,],

2(tlte-1) = Efz(t)|Ye ],

P(tlty—1) = E[(2(t) — &(ttr-1))(x(t) = &(t[tx—1))" Ve, ],

R(tlty—1) = E[u)v" ()Y, ],

rop(tlti-1) = E[(y(t) = g(ttr-1)) () — g(tlte-1))" Ve, ]

ria(tlte-1) = E[(x(t) = 2(tt-1))(y(#) = 9(tte-1))" Ve, ] 5

rao(tlty—1) = E :(fE(t) — &(ttr—1)) (2(t) — 2(ttr—1))" (W(t) — G(tltr—1)) %
(y(t) = g(tltr—1))" V1] ,

rialtitee) = E[o(t)(t) = 9T (Y() = V(tite-1) Ve, |

ro3(tltg-1) = E :(y(t) — G(tlte-1)) (y(t) — §(tlte—1))" (Y (t) — Y(t‘tkfl))T’Ytk_l] :

rig(tlte-1) = E[(z(t) = 2(tts-1))(y(t) — 9(tte—1))" (y(t) = Gt[tr-1)) ¥

(y(t) = G(tlte—1)" |Ye, s ]
.11)
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roatlter) = E[w(t) = gtlte-0) ((t) — 9tlte—1))T () = §(tltr-1))x
(y(t) = 3(tltx—1)T|Ye, ]

Moa(tlt1) = B [(Y(8) = T(tlt-1)((t) = §0ltn-0))(t) = §lt0))Tx  (5.12)
(Y (1) = ¥ (tftx-1) "V, |

ovaltition) = B |(Y() = Y(thtio1)(u(t) — (et Vi |
where
y(t) = y(tlte—1) 0 - 0
Y(t) = Y(tfte-1) = 0 Y _'Z(t’tk_l) 0 (5.13)
0 0 y(t) —§(tte1)

n2xn

Let Z(tx|tx—1) be the a-priori state estimate at step k given the knowledge of process Y;, ,, and
Z(tx|tr) be the posterior state estimate at step &k given the knowledge of process Y;, . The Extended
Kalman Filter approach begins with the goal of computing a-posterior state estimate Z(tx|t)) as a

linearized approximation of the form

(trlty) = Ao+ Ar(y(te) — 9(tkltk-1)), (5.14)
P(tx|ty) = Bo.
It was shown in Jazwinski [53] that
Ao(trlte—1) = 2(tkltr—1),
Ay(trltr—1) = rialtelte—1)ros(teltr—1), (.15)
Bo(telte—1) = P(telte—1) — Ar(telte—1)ro2(trltr—1) AT (tklts—1),

where A1 is the Kalman gain. Instead of approximating the conditional covariance at an observation
as a constant, Jazwinski [53] extended it to an approximation of order one.

For the rest of this study, for the sake of simplicity, we write f(z) = f(z;0), g(z) = g(z;0),
and h(z) = h(z;0). In this study, we extend the approximate equations for the conditional mean
and covariance at an observation to that of order two. To do this, we first state the Taylors series
expansion of a vector value function f about the vector y,

of(y)

19°(y)
dy

2 Oy?
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ofn  o0f of % f1 92 f 02 f1

dy1 dy2 " Oyn Oydy1 Oydya "' Oydyn
gﬁ gﬁ gﬁ X ngz (821”2 8828f2
where % = | 99 ¥ Yn ’8af(ZY) _ | 9y0y1  Oydy2 YOyn ’
y : : .. : y . . .
Ofn  Ofn Afn Pfn P fn 9% fn
oyr Oy2 " Oyn/ xm dydyr  OyOy2 " OyOyn/ L xp2

dlag(y - yu RIS A 5’) = Y(t) - §{(t|tk:—1)
We note that agf;g ) and Y (t) =Y (t|t_1) are n.x n block matrices whose entries are n-dimensional

. A2f(y) .
row vectors and column vectors, respectively. Moreover, ay(gy ) is referred to as vector-valued Hes-

sian matrix, and Y (¢) — Y (#[t;_1) is a diagonal matrix defined in (5.13).
Following these definitions and notations, we define the a-posterior state estimate & (¢x|t;) and

a-posterior covariance estimate P(tx|t;) as a quadratic approximation of the form

Btiltr) = Ao+ Ar(y(te) — §(teltr—1)) + A2(Y(t) — Y(t[tr—1)) (y(tr) — G(teltr—1))

P(telty) = Bo+ Bi(y(tr) — 9(teltr—1))(y(tr) — G(txltr—1))",
(5.17)

where Ag is an n x 1 matrix (column vector), Ay is an n X n matrix, As is an n X n block matrix
whose entries are 1 x n matrix (row vector), By and Bj are square n X n matrices.

In order to develop an algorithm for & (¢x|t;) and P(tx|tx), we need to solve for the A; and B;
for i = 0,1, As. For this purpose, we need to evaluate each quantity in (5.11)-(5.12). We use the
multi-dimensional extension of Stirling’s interpolation formula discussed in Magnus [78] and Luo
[75] to approximate the state drift, diffusion and the observation functions in (5.9) up to the second
order.

Using the second-order polynomials, we define the multidimensional interpolation formula as

f(z) = £(&)+ Dacf() + 3DAH(%),
g(z) = g(#)+ Dag(®)+ $D%,8(@), (5.18)
h(z) = h(2)+ Dash(d) + 1D%, h(2),
where the operator lN?Ax, and DQAx are described in [78] and are defined by

Dpy = % ( nlepup5p> )

p:

. N (5.19)
DQAI = % ZIA»T;%‘;%"‘Z > Az Az (ppdp) (1edq) |

p:

p=1g=1
q#p
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where Az, ¢, and y,, are defined by

T — I,
5f(2) = f(2+Ley) —f(2—Lep), (5.20)
k(@) = 5 [f(%+Fep) +£(2 - Gep)]

and h > 0 is the step size, e, is the pth unit vector.

Using the Cholesky transformation, we transform x to a variable z which is mutually uncorre-

lated. Following [78], we write

z = S;la,
- (5.21)
f(z) = £(Sz2) =1(z)
From (5.21), (5.18) reduces to
f(z) = f(2)+ Da.f(2) + 3DA.K(2),
8(z) = &%)+ Da-g(2) + ;DA 8(2), (5.22)
h(z) = h(2)+ Da:h(2) + D2 h(%).

Let o; represent the ith moment of an arbitrary element in Az. We shall use the interpolation

approximations (5.22) to evaluate the expressions in (5.11)-(5.12). For this purpose, we prove the

following Lemma.

Assumption 5 :
As discussed in Magnus [78], we assume Az to be iid Gaussian. Hence,

09,1 =0, i €N. (5.23)

LEMMA 5.1 Under the Assumption B, we have

T — ~ 5)
i) = 5 s + g Y e

2

4h4 Z 1pOpHiqdq hlup‘splﬁq‘S i +R

p,g=1
q#p

lel(tk’tkfl) = %ZSJ; <Mp5p’~1(2)>T
p=1

T |t— :S(Dtt,~~) (| th— telte—1),; -
r12(tk[tk—1) o | D(tklte 1){hi7hT} 1§i§n+9€( klte—1)r0.2(tk|tk 1){hi7hT}
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ra(telteo1) = SuJ — 28 E(tgltp_1) — 2r11C(tp|tr_1)CT —r11CTC(t|tr_1)

—SD(t|tp—1) v - CT,

{n" h}
ro2(telte—1) = Sz (Qij)i<i<n
15j<n
ro3(tklte—1) = (Lij)i<i<n
1<5<n

roa(tiltr-1) = E[AATAAT)Y;, ] - E[AATACT|Y;, ] -E[4ATCAT|Y;, ]
E[AATCCTY, || —E[ACTAAT|Y,, ] +E[ACTACT|Y;, ]
E [ACTCAT] - E [ACTCCTY,, ]

oy2(teltk-1) = (Fi)i<i<n

where

- 1~y -
A = DAZh(2)+§D2AZh(2)+v

_ 92 27
C = 55D k().
p=1
. _ 92 - S U o 27 A ~
Ro= 2 (Mp(sph(z)) 10l 4h4 2y (5 h( z) hi(2)
p=1 p=1
+ 4h4 ZZ (Mp OphtgOqht (2 )Mp5pﬂq5 hi(2) + eiRi
1 1
" gip
_ 27 27
roa(tilte-1) g jry = Zup(s hi(3) 0" 4h4 25 hi(2)52 B (2)
2
+ Z HpOptiadahitipOppigdeh + Rize” :
=1

q#p 1<i<n

h = it(;ﬁ') h(Z(tk|tk—1)), ro2(tkltk—1) = TO,Q(tk‘tk—l){i’ ity and detailed expressions for
Tojg(tk‘tkfl){};ilT} J(trlte—1), E(teltr—1), D(tk’tkfl){,;j, y (tk\tkfl){;,Tj,}’ D(tk’tkfl){izi,if}’
Qij E [AATAATY,, || E [AATACTY;, |, E [AATCAT)Y,, |, E[AATCCTY,, ],

E [AC'TAAT|§Qk_1], E [ACTAC'T]Ytk_l], E [ACTCAT]Ytk_l], E [AC'TCC'T|Ytk_1], and L; ;

are given in Appendix B.2.

Proof. The proof is given in Appendix B.3. U

We can now use these values to solve for A;, B;, i = 0,1, and As. The first step in the algorithm

is to solve for A;, B;, i = 0,1 and A5 in (5.17). For this purpose, we use the following Lemma by
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following the description of the moment propagation procedure across the observations described

in Jazwinski [53].

LEMMA 5.2 Under the assumptions in Lemma 5.1, we have

Ao(trlte—1) = rioltrlte—1) — A2(teltr—1)oyva(trlti-1),
Ar(telte—1) = [ria(elte—1) — Ao(telte—1)r0,3(Eklte—1)T] ro2(trlte—1) "1, (5.24)
Ap(telte—1) = Ti(tulte—1)Ts " (trltr—1),
where
Ti(telt-1) = ria(telte-1) — rio(trlte—1)ovs(tklte—1)
—r11 (tlte—1)7g 3 (bl te—1)70,3 (k| tr—1)
To(tultr—1) = Moo(tlti—1) — ovaltlti—1)ovs(trlti—1)
—rg 3 (tklth—1)r02 (tklte—1)r03 (k[ tk—1)-
Proof. Proof is in Appendix B.4. U

REMARK 7 If A5 = 0, (5.2) reduces to

Ay = Z(t|tk—1)

A = ria(tilte_)roz(telte—1) "
Now, we present a Lemma for finding By and B;.

LEMMA 5.3 Under the assumptions in Lemma 5.1, we have

By = (Na(tklteo1)rga(tlte—) = Nu(trlte ) [ro.altulte1)rgd(tilte)
—roa(trlty_1)] " (5.25)
By = Ni(tp|tp—1) — Bi(tr|tk—1)ro2(trlte—1),
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where

No

E [(2(tk) — 2(txlt)) ((tk) — 2(tlt) T Ve, ]
P(trlte—1) — ri1(telte—1)AT — ria(tilte—1) AL — Avry(telti1)”
—Agria(tiltr—1))" + (@(telte—1) — Ao)(@(tlte—1) — Ao)"
—(@(tlte—1) — Ao)ro2(tkltr—1) G jry Az
Ao (bl 1) AT + Arroa(telti-1) g 5 A2
—Aaroa(tltn 1) 5, (b {tlti 1) — Ao)
+Aor0 3 ([ th—1)A1 + Ao Mo o (ty|tp—1) AT
E [(2(tk) — 2(tlte)) (@(tr) — 2(tlte) T (y(te) — 9(txlt)) >
(y(t) — 9(tkltr) T 1Y, ]
E ([(x(ty) — Ao)(z(tr) — Ao)" — (x(te) — Ao)(y(tr) — G(trlte—1))" AT
—(@(tr) — Ao)(y(tr) — §(txlte—1))" (Y(tk) = Y(txlts—1))" A2
—Au(y(te) = (teltr-1)) (x(t) — Ao)"
+AL(y(t) = G(tlte—1) ((te) — G(telts—1))TAT] x
(y(t) = 9Ctklte—1)) (y(tr) — G(trlte—1)"1Ye,)
ro.0 + (E(trlte—1) — Ao)(@(tltr—1) — A0)Tr02
E [((tr) = &(telts-1)) (y(tr) — d(tlte—1)T AT (y(t) — G(tlte—1))x
(tr) — 9(tkltr-1))" Y1)
E [(z(telts—1) — Ao)(y(te) — G(tlte—1))" AT (y(tr) — G(txlts—1))

(t) = G(tlte—1))" [Ye, ]
E [Ai(y(te) — §(tkltr-1)) (@ (te) = 2(tlti-1))" (y(tx) — G(tx]tr-1)) %
(y(t) = 9(trltr—1))" Ve, ]
E [A1(y(tr) — gt ti—)) @ (trlte—1) — Ao)T (y(te) — G(trlte—1)) %
(y(t) = G(tklte—1))"|Ye, ]
E [A(y(te) — 9(txltr-1))(u(tr) — d(telte—1))" AT (y(te) — 9(tklts—1))

(y(ty) — Q(tk|tk_1))T|}Qk71] , and Z(tg|ty) is given in (5.17).

Proof. The proof is shown in Appendix B.5.
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REMARK 8 If By = 0,and Ay = 0, then from (5.25) and Remark 7, we have

Ao = ro(tkltk—1) = T(tk|te—1),
Ay = ria(telte—)roa(telti—1) "

By = N = Ptk\tk_1 — A1’I“072(tk|tk_1)14{.

Thus, the presented state and covariance algorithm includes the EKF scheme [82] as a special case.

5.3.1 Posterior Prediction of State and Covariance of Nonlinear System

A final step in the recursive algorithm is to predict the state (¢, (t;) and state variance P (t;1|t;)
at the time of the following measurement. Using (5.9), the definition of P(t|t;—1) in (5.11), and
(5.18),we have

tklt) = a(tlte) + |CG0) + 5 3 0G0 | A1
P(tpslte) = P(telte) +[F i pp0pf(2(t[tr))e) ST + Z Swepttpdk (2(tilty))

+73 Zﬂp oE (2t [tk)) p0p £ (5(tklts))

. P ST ECAN)

+UT§( 2(tx|tr)) Z 528" (2(tk|t))
=

n ~

a? 2 .
+ 7= 21 pOpitgOaf(Z(trlte) ) pdprigdef (2(tkltr))
P.q=
p#q

S ROl Sl (G(tltn))]
+ 73 Z 1p0p8(2 (k1) p0p8 (2(tktk)) + B(2(tklts))&T (2(tktr))-

+ i 5p~(2(tk|tk))gT(2’(tk|tk))

T (5.26)
+ 5% Z &(2(tkltr)) 528" (2(tklt))
U2 n ~ ~
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The one step prediction error
Ay(k) = yr — 9(tltr—1), (5.27)

54



is assumed to be normal with mean 0 and variance 7 2. Hence, for N independent random obser-

vations, the Maximum Likelihood approach is equivalent to maximizing

N
1 1 _
L(©)=—5> {QAyT(km,;(tktk_l)Ay(k:) +log [roa(telte-1)l| . (5.28)
k=1

where © is the parameter space.

REMARK 9 The presented predicted algorithm extends the algorithm generated by the EKF ap-
proach in a systematic way. We further remark that the second order estimation for nonlinear
stochastic systems can be extended to higher order estimation. The scheme is highly complex math-
ematical expressions. Further detailed examination (applicability/computational, feasibility, et.c) is

under investigation.

5.3.2 Algorithm
We describe the algorithm used in the computation of the estimates for nonlinear log-spot price

stochastic differential equation (5.29) in Appendix B.1.

5.4 Some Results: Natural Gas

In this section, we give the parameter estimates for the stochastic differential equation (5.9). We
consider the nonlinear stochastic differential equation that was developed for describing continuous

time stochastic dynamic model of energy commodities log-spot price processes in (4.11),

da:l = M($1 + Iio)(/ﬁ}Q — xl)dt + (5(/432 — .rl)dwl(t), .Z'l(to) = X10,
dra = 7y(z2+ K1)(x1 — x2)dt + o (t, x9t) (2 + K1)dWa(t), x2(to) = zo2. (5.29)
y(t) = =(t) +o(t).

It follows from (5.29) that

f(z: 0) — p(z1 + ko) (K2 — 21) g(z:0) d(ke — x1) 0 |

Y(x2 + K1) (21 — 22) 0 o(t,xa)(r2 + K1)

and x = {x1,22}7, where p > 0,y > 0, kg > 0, k1 > 0, ko > 0,0 > 0,0 > 0, v is a white
noise, and W = {7, WQ}T, W1 and Wy are independent Wiener processes. This model governs

the price for energy commodity at time . x2(t) is the nonseasonal log of spot price at a time ¢ and
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x1(t) describes a mean process of non-seasonal log spot price at time ¢. The model (5.29) follows
the principle of demand and supply processes which suggest that the price of a energy commodity
will remain within a given finite lower and upper bounds x; > 0 and ko > 0, respectively. In this
case, ko characterizes the fixed cost, (z1(t) + Ko)(k2 — 1) characterizes the market potential for
x1(t) per unit of time at a time ¢. We note that the first component of (5.29) has a unique non-zero
equilibrium k9. Moreover, we observe that whenever the price z; lies above kg, there is a tendency
for the price to fall and whenever the price is below ko, the price rises back. Hence, ko is the
equilibrium of the first component of (5.29). Furthermore, 1 and v are the rate of mean reversion
for z1 and x5 respectively, § and o are the volatility for x; and x5 respectively.

We apply this model to the Henry-Hub natural gas data set [24]. We use the Henry-Hub natural
gas spot price data set [24] for the observation data for x2. We generate observation data for x;
from the forward price F'(¢,T") at time ¢ of an energy goods with maturity at time 7". We define the
forward price as

F(t,T) = Ep (22(T)). (5.30)

By definition, z (¢) is the expected log-spot price, which in this case is the observation data F'(¢,T').
We use Henry-Hub natural gas observed future price at a time ¢ with delivery time 7.

The existence and uniqueness of the solution of (5.29) is given in Chapter 4.

0.1182 0
The initial state of the model is 1 (¢1|tg) = 1.23, Z2(t1|to) = 1.456, P(t1|to) =

0 0.22
Table (4) shows the parameter estimates of Henry Hub daily natural gas.

Table 4: Estimated Parameters of (5.29) for Henry Hub daily natural gas spot prices (20 run average)

1 ~y Ko K1 K2 ) o

16 178 .69 .56 15 0.65 047

Table 4 shows the estimates of the parameters of (5.29).
Furthermore, we show some of the estimates of the simulations for the modified extended Kalman

filter (MEKF) scheme compared with the usual EKF scheme.
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Table 5 shows the real data sets, estimated simulation results for the Modified EKF scheme and the usual EKF scheme.
The estimated error is calculated by subtracting the simulated estimates from the real data set.

We show the graph of the real and simulation results using MEKF scheme.

Real Price for Matural gas Simulated Price for Natural gas
10 T T T T T

Matural gas (dollars)
Matural gas (dollars)

L L L L L L L L L L
0 200 400 600 &00 1000 1200 0 200 400 600 &00 1000 1200
time t (days) time t (days)

Real, Simulated and Difference plot

10 T T T T T
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Figure 5.: Real and Simulated price for Natural gas data set [24] using Modified EKF scheme

Furthermore, we show the graph of the real and simulation results using EKF scheme.
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Real, Simulated and Difference plot
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Figure 6.: Real and Simulated price for Natural gas data set [24] using EKF scheme

Figure 5 (a) shows the graph of the real natural gas data set, Figure 5 (b) shows the simulated price using Modified
EKF scheme, and Figure 5 (¢) shows the combination of the real, simulated and difference of the real and simulated price
of the natural gas data set using the modified extended Kalman filter second order estimation scheme.

Figure 6(a) shows the graph of the real natural gas data set, Figure 6 (b) shows the simulated price the usual ordinary
EKF scheme, and Figure 6 (¢) shows the combination of the real, simulated and difference of the real and simulated price
of the natural gas data set [24] using the usual ordinary EKF scheme.

The following graph show the absolute error of the simulation result using the MEKF and EKF

scheme.
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Absolute error comparison
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Figure 7.: Absolute error estimate using natural gas data set [24]

Figure 7 (a) shows the absolute error of the simulations of natural gas data set using the modified extended Kalman
filter scheme, Figure 7 (b) shows the absolute error of the simulations of natural gas data set using the usual extended
Kalman filter scheme, and Figure 7 (c¢) shows the comparison of the absolute error for the modified and usual EKF

scheme.

REMARK 10 We further remark that all codes are written in Matlab. To compute the maximization
argmin L(®) in the algorithm, we use the Nelder-Mead Simplex Method developed in Matlab.
Maximizing (5.28) is equivalent to minimizing

N
1 1
L©) =) [2AyT(k)r()’%(tﬂtk_l)Ay(k) +log |ro2(trlte—1)|] - (5.31)
k=1

REMARK 11 It is clear from Figures 5 and 6 that the presented scheme is superior than the EKF
approach. This shows that the modified extended Kalman filter does in fact reduce the magnitude of
error tremendously. Furthermore, the modified extended Kalman filter scheme was able to capture
the upward price spike in the neighborhood of time ¢ = 250 days better than the EKF scheme. Both
scheme were not able to capture the upward spike around the time ¢ = 800 days. This might be as
a result of the kind of model we are using to describe the dynamics of the natural gas data set. The
upward spike in price at these region was due to the decline in production of natural gas and the
increase in demand for electricity generation. We will like to also mention one disadvantage with

this scheme. It is computational intensive.
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Chapter 6

Discrete Time Dynamic Model of Statistics Process and Applications

6.1 Introduction

Recently, several models have been developed to investigate the volatility process described by
stochastic differential equations [140] and stochastic difference equations [38]. It is well-recognized
that volatility is predictable in many asset markets [9]. Moreover, it is observed that the volatility
predictability varies significantly. Engle [38] developed a class of discrete-time models where the
variance depends on the past history of state of commodity/service. Bollerslev [9] generalized
models in [38] to the GARCH(p,q).

Using the concept of moving average, the estimate for the variance of a general statistics from a
stationary sequence is obtained [13]. Employing the batched mean, the grand mean of the individual
batch mean and introducing ASAP3 [122], it is shown that ASAP3 fits AR(1) time series model to
the batch mean, and it provides better technique for points and confidence-interval estimators.

It is well known and well recognized [33, 82, 118] that the Kalman filtering approach for the
system parameter and state estimation problems is based on the continuous time coupled system of
state dynamic and observation systems. Using the batched mean and the first order iterative process
for X,, [137], a first order iterative process [137] is developed to estimate the population variance
from a given time series data set.

For the past 40 years, researchers [7, 15, 21, 33, 44, 45, 47, 55, 86, 87, 89, 95, 103, 104, 105,
106, 107, 116, 118, 122] have paid lot of attention for estimating continuous-time dynamic models
from discrete time data sets. The Generalized Method of Moments (GMM) developed by Hansen
[44], and its extensions [21, 45, 47, 55] have played a significant role in the literature related to
the parameter and state estimation problems in linear and nonlinear stochastic dynamic processes.
Under the continuous-time dynamic and discrete time data collection processes, the GMM and its
extensions/generalizations consist of : 1. Stochastic differential equations of Ito-Doob type, 2.
Euler-type discretization scheme, 3. the general moment function, 4. minimizing functional or

objective criterion function [44, 47].
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The most of the existing parameter and state estimation techniques except the Kalman filtering
are centered around the usage of either overall data sets [21, 45, 47, 55], or batched data sets [13],
or local data set [107] drawn on an interval of finite length 7T'. This leads to an overall parameter
estimate on the interval of 7T'. In this work, the presented approach is focused on the local moving
lagged restriction of a finite sequence of a data set drawn at a partition P of finite interval of length
T to a subpartition of P of moving subinterval [t;_,,, ,t;_1] of the interval. Moreover, using the
lagged adaptive process, the present work initiates the technique to estimate the parameter and state
at each data point for the given data set. Of course, these parameter estimates depend on the local
admissible lagged finite restricted sequence of data. As the sub-partition moves from left to right,
the approach provides a more lagged data subsets. In fact, the available lagged data subset at the
previous time is a subset of the available lagged data subset at the subsequent times. The character-
istics of this approach reduces the local error between a simulated value of the state of the system
corresponding to the local available lagged restricted sequence of data under subpartition and pre
determined performance criterion. We finally note that at the left end point of data simulation inter-
val, without loss in generality, it is assumed that there is at least three data points that are assumed
to be close enough to the true values of solution process of continuous dynamic process. In general,
this is assured by the uniqueness and continuous dependence of solution process with respect to the
initial data (%o, ) (for delay stochastic differential equation) and (Zp, y,) (in the absence of delay
stochastic differential equation) [70]. Moreover, as the location of data point approaches close to the
right end point of the time interval, the local admissible lagged finite restricted sequence approaches
to the given data set. We remark that this situation does not affect the computational ability. This is
due to the fact that as the longativity of the past history approaches to the given data set, its influ-
ence diminishes. In fact, simulation value approaches to the saturation level under the performance
criterion.

The presented local lagged adapted GMM method is based on the: 1. development of stochastic
mathematical model of continuous time dynamic process [69, 70], 2. utilizing Euler-type discretized
scheme [58] for the stochastic model in 1, 3. developing discrete time interconnected dynamic
model for statistic process, 4. employing lagged adaptive expectation process [88] for develop-
ing generalized moment equations, 5. conceptual computational parameter estimation problem, 6.
conceptual computational state simulation scheme, and 7. mean square e-sub optimal procedure.

The present work is motivated by parameter and state estimation problems of continuous time

nonlinear stochastic dynamic model of energy commodity markets described in (4.11). The pur-
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pose of the parameter and state estimation problems is for model validation rather than model
mis-specification [21]. For the continuous-time dynamic model validation, we need to utilize the
existing real world data set. Of course, the real world data set is drawn/recorded at discrete-time on
a time interval of finite length. In view of this, employing the stochastic numerical approximation
scheme [58], we approximate the continuous time stochastic differential equations. In almost real
world dynamic modeling problems [64, 69, 70, 88], future states of continuous time dynamic pro-
cesses are influenced by the states past history and response/reaction time delay processes to present
states [64, 88]. Under this assumption and using the concept of lagged adaptive expectation process
[47, 88], we formulate a discrete-time observation system. In fact, the discrete-time dynamic mod-
els depend on the past history of the state of a system [59]. By using the method of moments [14],
and the constructed observation system, we estimate the state and its parameters. This idea leads to
the development of interconnected disctete-time dynamic model of local sample mean and variance
statistic processes. One of the by-products of the discrete-time sample variance statistic process is
that it provides an alternative approach to the GARCH(1,1) model [9, 10]. Furthermore, the usage
of the continuous-time stochastic dynamic model [69, 70], lagged expectation process, my- local
lagged generalized method of moments, and interconnected discrete-time dynamic model of local
sample mean and variance statistics processes lead to an alternative innovative method of state and
parameter estimation problems for continuous-time dynamic models described by stochastic differ-
ential equations. The developed method is referred as local lagged adapted generalized method of
moments (LLGMM). The numerical approximation process and simulation processes need to be
synchronized with the existing data collection process. Using a schedule synchronization process,
the concepts of local admissible sample/data observation size, local admissible finite conditional
restriction sequence of data set are introduced. We estimate the parameters locally and then deter-
mine the local e-sub-optimal simulated state estimates. In fact, our approach is more suitable and
robust for forecasting problem. It also provides upper and lower bounds for the forecasted state of
the system.

The organization of this study is as follows:

In Section 6.2, we derive a discrete time dynamic model for sample mean and variance pro-
cesses. We introduce a new concept of parameter and state estimation techniques. This new concept
is motivated by the parameter and state estimation problems of continuous time non-liner stochas-
tic dynamic process. In Section 6.3, we construct observation system from a nonlinear stochastic

functional differential equations. In addition, using the method of moments [14], in the context of
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lagged adaptive expectation process [88], we briefly outline a procedure to estimate the state param-
eters locally. The conceptual computational and simulation schemes are presented in Section 6.4.
Moreover, a conceptual Matlab code and its implementation scheme are designed. The usefulness
of computational algorithm is illustrated by applying the code to four energy commodity data sets,
U.S. Treasury Bill Yield Interest Rate data set, and U. S. Eurocurrency Exchange Rate data set for
the state and parameter estimation problems. Moreover, we compare the usage of GARCH(1,1)
model with the presented model. Furthermore, we compare our simulated volatility U.S. Treasury

Bill Yield Interest rate data with the simulated work of Chan et al [15].

6.2 Derivation of Discrete Time Dynamic Model for sample mean and variance Processes.

In this section, we use the idea of moving average to derive an algorithm for the mean and variance
of sample sequences with respect to a continuous stochastic process. The development of idea and
model of statistic for mean and variance processes is motivated by the state and parameter estimation
problems of continuous time nonlinear stochastic dynamic model of the energy commodity market
described in (4.11). In addition, the problem of price forecasting of energy goods is also addressed.
For this purpose, we need to introduce a few definitions and notations.

Let 7 and ~ be finite constant time delays such that 0 < v < 7. Here, 7 characterizes the
influence of the past performance history of state of dynamic process, and ~y describes the reaction
or response time delay. In general, these time delays are unknown and random variables. These
types of delay play a role in developing mathematical models of continuous time [64] and discrete
time [59, 88] dynamic processes. Based upon the practical nature of data collection process, it is
essential to either transform these time delays into positive integers or design the data collection
schedule in relations with these delays. For this purpose, we describe the discrete version of time

delays of 7 and ~y as

y
At;

}4—1, and q—H

]
. HM ] 1, 6.1)

respectively. Moreover, for the sake of simplicity, we assume that 0 < v < 1 (g=1).

DEFINITION 6.2.1 Let x be a continuous time stochastic process defined on an interval [—1,T)
into R, for some T' > 0. Fort € [—1,T], let F; be an increasing sub-sigma algebra of a complete

probability space (Q, F, P) for which x(t) is F; measurable. Let P be a partition of |[—1, T'| defined
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by
P :={t; =ty +iAt}, for i€ I(—r,N), (6.2)

where At = % and I(a,b) is defined by I(a,b) = {j € Z |a < j < b}.

Let {x(t;) f\;_r be a finite sequence corresponding to the stochastic process x and partition P

in Definition 6.2.1. We further note that x(¢;) is F3, measurable for i € I(—r, N). We recall the

definition of forward time shift operator F' [11] :
Flx(ty) = z(tpgs)- (6.3)
In addition, let us denote x(¢;) by x; fori € I(—r, N).

DEFINITION 6.2.2 For ¢ = 1l and r > 1, each k € Io(N) and each my, € 1(2,r +k — 1), a

partition Py, of closed interval [ty ,tp—1] is called local at time ty, and it is defined by
P = tkfmk < tkfmk+1 <o < tp1. (6.4)

Moreover, Py is referred as the my—point sub-partition of the partition P in (6.2) of the closed

sub-interval [ty_p,, , tk—1] of [—7,T).

DEFINITION 6.2.3 For each k € Iy(N) and each my, € 1(2,7 + k — 1), a local finite sequence at

a time ty, of the size my, is restriction of {x(t;)}._  to Py in (6.4) [2], and it is defined by

t=—T

Sk = {F Te1 = myt1- (6.5)

k—1

As my, varies from 2 to k+r—1, the corresponding local sequence Sy,, . at ty, varies from {x;};—,

to {xi}fz_irﬂ. As a result of this, the sequence defined in (6.5) is also called a my-local moving

sequence. Furthermore, the average corresponding to the local sequence Sy, 1 in (6.5) is defined

by

_ 1 .
Sk = — Y Flap_y. (6.6)

The average/mean defined in (6.6) is also called the my-local average/mean. Moreover, the my-

local variance corresponding to the local sequence Sy, i, in (6.5) is defined by

2
0 . 0 )
mi > (lek’—l_r;k > F]:L‘k_1> , for small my,

k. .
i=—mp+1 =—mp+1
Stk = ‘ ! " 2 (6.7)
1 j 1 j
Y (Paa -2 Y Fia . forlagem
t=—mp+1 Jj=—mr+1
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DEFINITION 6.2.4 For each fixed k € I1(0,N), and any my € Is(k + r — 1), the sequence
{Si,k kol is called a my— local moving average/mean process at t. Moreover, the sequence

i=k—my,

2 1k—1 . . .
{Sz‘,k i—k—my, IS called a my— local moving variance process at ty.

DEFINITION 6.2.5 Let {x(t;)}. . be a random sample of continuous time stochastic dynamic
process collected at partition P in (6.2). The local sample average/mean in (6.6) and local sample
variance in (6.7) are called discrete time dynamic processes of sample mean and sample variance

statistics.

DEFINITION 6.2.6 Let {x(t;) i]i_r be a random sample of continuous time stochastic dynamic pro-
cess collected at partition P in (6.2). The my-local moving average and variance defined in (6.6)
and (6.7) are called the my-local moving sample average/mean and local moving sample variance
at time ty, respectively. Moreover, my-local sample average and my-local sample variance are re-

ferred to as local sample mean and local sample variance statistics for the local mean and variance

of the continuous time stochastic dynamic system at time ty, respectively.

In the following, we derive a dynamic algorithm described by the interconnected discrete-time
local conditional sample average/mean and variance dynamic processes. First, we shall state and
prove a change in Sy, x and s?nk  With respect to change in time ¢;. This fundamental result is

motivated by Exercise 5.15 in [14].

DEFINITION 6.2.7 Let {E[x(t;)|F,_, |}~ _, ., be a conditional random sample of continuous time
stochastic dynamic process with respect to sub-o algebra F;,, t; € P in (6.2). The my-local
conditional moving average and variance defined in the context of (6.6) and (6.7) are called the
myg-local conditional moving sample average/mean and local conditional moving sample variance,

respectively.

LEMMA 6.1 (Discrete Time Dynamic Model of Local Sample Mean and Sample Variance Pro-
cess). Let {E[x(t;)|F:,_, ]} .., be a conditional random sample of continuous time stochastic

dynamic process with respect to sub-o algebra F,, t; belong to partition P in (6.2). Let Smk,k and

2

Smk,k

be my-local conditional sample average and local conditional sample variance at t, for each
k € I(0,N). Then, an interconnected discrete time dynamic model of local conditional sample

mean and sample variance statistics is described by
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( —

_ Mk—p & _
Smkprrlvk*p‘i’l T Mp—pt1 Smkfpykfp + Ny _p,k—p> SmO,O =50
mg—1 P MEg—i 2 Q2
k— —1
Tk Z -1 Smk_i,k—i+ P— 1 Smk pvk p
=11 T me—j [T mi—;
Jj=0 j=0
+emy_ 1 k—1, for small my, myp_1 < my, 68)
52 = '
M,k L mg_;—1 2 52
Z i—1 Smg_ik i+P 1 Mg —p,k—p
—p
i=1 I1 MEk—j mEg—;
=0 Jj=0
+€my_1,k—1, Jor large my, my_1 < my
{ sznm = s?2,i € I_,(0), initial conditions
where
—Mp— p+1
— 7 _ p—mpg_p+1 My — 0
My _pk—p = mk o1 Flaogp = F gy — F Prp—p + Forpp |,
== p+1+1
P it 2 P F7i+177nk_i 2 P F7i+277nk_i 2
_ omyel (F o) ( w1)” A k1)
Emp_1,k—1 = mr Z Z i1 Z i1
i=1 H mg_; =1 H My_j =1 H ME—j
=0 i=0 j=0
—i+2—my_,; .
p ) (F $k_1)2
mp 1 l:71+27mk_1-+1
+ mg Z i—1
=1 [T me—;
j=0
—it1 =
Flazk_lFSa:k_l
p l,s:—i+2—mk_¢+1 0
l#s 1 Fl Fs
+ Z i1 ~ mr Z Tp—1L"Th—1,
=1 H M l,s=—mp+1
j=0 J l#s
p (F itlg, 1) p (F—i+1—mk7ixk11)2 p (F—i+2—mk7ixk71)2
€mp_1,k—1 = Z i1 - Z i—1 - Z i—1
=1 H mk_J =1 H mk_]- =1 H mk—j
j=0 j=0 j=0
—it+1
—it2-my_; Flag_1Foa,_y
p (le‘k_l)z P l,S:—i-f—Q—mk_H_l
l:7i+277nk_i+1 1758
+2 =~ + 2 =
i=1 1 me_j i=1 [T mi—;
3=0 3=0
1 0 l
ot 2 FlapaFimp
l,s=—mp+1
\ l#s

(6.9)

Proof. The proof of Lemma 6.1 for small my, my_1 < my, is given in C.1. The case for small my,

my, < my_q is also described in C.2. The proof for large my, mg_1 < my, is given in C.3.
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REMARK 12 The interconnected system (6.8) can be re-written as the one-step Gauss-Sidel dy-

namic system [62] of iterative process described by

X(k) = A(k, X(k — 1)X(k — 1) + e(k),

where
X;(k
X(k) = 1(k) |
X2 (k)
Xl(k) = Smk,p+1,k7p+1v
2
Smk—p+17k—P+1
52
My _py2,k—p+2
Xo(k) = : ,
ank,l,kq
Sznk,k:
A1k Aok
Ak, X(k—1)) = (k) 12(k)
Ao (k,X(k—1)) Aga(k)
My
An(k) = #,Am(@:(o 0
0
0
, for small my,
0
mrp—1)mr_, &
( kpfl) k pSmk_p,k—p
Agl(k) = = D
0
0
, for large my,
0
pj’;lkip gmk—p7k—p
H mg—j
j=0
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Ago (k)

0 1 0 0 0
0 0 1 0 0
0 0 0
0 0 0 0 1
(mp—D)mg—p  (Mr—1)mp_pi1 (mg—1)mg_pti—1 (me—1)mp_1
p—1 p—2 p—i mi
mg ]_[ Mg —j mg H mp—j mi H mg—j
j=0 §=0 3=0
for small my;
0 1 0 0 0
0 0 1 0 0
0 0 0 , for large my
0 0 0 0 1
mg—p—1  mg_pp1—1 Mp—pti—1—1 mg—1—1
p—1 p—2 p—1 mi
IT me—y T My [T mu—j
j=0 j=0 7=0
e (k
ek) = 1(k) |
ex(k)
ei(k) = n(k—p),
0
0
ex(k) =
e(k—p+1)

REMARK 13 Foreach k € I(0,N), p = 2 and small my, the inter-connected system (6.8) reduces

to the following special case:

Smkfhk_l

2
Smk,k

where

. Mp_2 3
mg—1
. my—1l |ME_1 2
my my “mp_1,k—1
2

tEmy_1,k—1, Smii =

S

2

19

e ok—2 T Mmg_o,k—2> Smg,0 = S0

mEg—2 2

S
mEmg_1 " Mk—2,k—2

(0),

1€l o
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mEg—2 Q2
mEmg_1 "~ Mg—2,k—2

6.11)



—my_2+1
_ 1 i — _o+1 - _ 0
Mg o k=2 = - Y. Flap_o— F ™2ty o — F™2py o4 Flrp o,
i:—mk,1+1
2 _ 2 _ 2
e [(PPre (P ) (P )
5mk_1,k—1 - m my
Y o N o (o Y
MmEmg—1
-mg_g > Flag_1Flzg_y  1-mp_y
DY (Fizp_1)? i7j=;ﬂ?k—1 S (Flog_q)?
mep—1 | = Mk-1 1#] i=l—my
+ my, MEmp—1 + mEmy—1 + my,
0 ) .
> Flzp i Flap g
1,j=1—my
i#]
my
. mp—1mg_1 _ mp—1 mg_2 . Mmp_2
REMARK 14 Define ¢p; = T me o P2 T T ey and @3 = e For small my,

mg_1 < myg, Yk, we have o1 < 1, 9 < 1,and 3 < 1. From 0 < ¢;,7 = 1,2, 3, and the fact that

2_
1+ P2 = mqflgl Mp_1 + =2 | < mﬁ’iﬂ_l [mg—1+1] < mTZQ L < 1, the stability of the trivial
k k

mg_1| — .

solution (X (k) = 0) of the homogeneous solution corresponding to (6.10) follows. Moreover,

under the stated condition, the convergence of solutions of (6.10) also follows.

REMARK 15 Also, (6.11) can be re-written as

X(k) = A(k, X(k — 1)X(k — 1) + e(k), 6.12)
X, (k) )
where X(k), A(k) and e(k) are defined by X(k) = , Xi(k) = Sy k-1, Xa(k) =
Xs (k)
S?nk,l,kfl
S?nk,k’
A (k) Aia(k) m 0
A(k) = A (k) = 5T Are(k) = (0 O>,A21(k?) = e 1mes o
Aoi(k) Aga(k) T Omi-ak-2
Ans(H) ' ' = (M) e =m0 = |
22 = , € = , €1 =NKrK—2),€ =
(mrp—1)mg_o (mg—1)mg_1 eg(k) E(k . 1)

REMARK 16 From Remark 13, we note that the local sample variance statistics at time ¢; depends
on the state of the my_; and my_o-local sample variance statistics at time tx_; and t;_o, and the
mg_o-local sample mean statistics at time t;_o. We shall later compare the my-local sample vari-
ance statistics with the GARCH(p,q) model and show that the my-local sample variance statistics

gives a better forecast than the GARCH(p,q) model under the usage of simulating a real data set.
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6.3 Parametric Estimation

In this section, we consider a parameter estimation problem in drift and diffusion coefficients of a
very general continuous-time nonlinear stochastic dynamic model described by a systems stochastic
differential equations. This problem is motivated by the continuous-time dynamic model validation
problem described in (4.11) in the context of energy commodity real data set. This is achieved by
utilizing the lagged adaptive process [88] and the interconnected discrete-time dynamics of local
sample mean and variances statistic processes model in Section 6.2 (Lemma 6.1). We consider a
general system of stochastic differential equations under the influence of hereditary effects in both

the drift and diffusion coefficients described by
dy = f(t, yt)dt + U(ta yt)dw(t)v yto = %o, (613)

where y,(0) = y(t +6), 0 € [—-7,0],f, o : [0,T] x C — R? are Lipschitz continuous bounded
functionals; C is the Banach space of continuous functions defined on [—7, 0] into R? equipped with
the supremum norm; W (t) is standard Wiener process defined on a complete filtered probability
space (2, F, (Ft)t>0,P); pog € C, and y,(to + 0) is (Ft,) measurables; the filtration function
(F)¢>0 is right-continuous, and each F; with ¢ > ¢ contains all P-null sets in F; the solution
process Y (o, ) (t) of (6.13) is adapted and non-anticipating with respect to (F3)¢>o.

Let V € C[[—7, 0] x R?,R™], and its partial derivatives V;, %%’ %27‘2/ exist and are continuous.

We apply Ito-Doob stochastic differential formula [70] to V', and we obtain

where the L operator is defined by

LV(t, Y, yt) = V;f(tu y) + Vy(ta y)f(tv yt) + %tra/;fy(t: y))b(tv yt)
b(t,yt) = o(t,y)ol (t,ys).

(6.15)

For (6.13) and (6.14), we present the Euler-type discretization scheme [58]:

Ay; = f(ti1,y,, )AL +0o(ti1,y;, ) AW; 1, i € [1(N)

AV (ti,y(ti) = LV(ti—1,y(ti), yt, ) At + Vy(tio1, y(ti-1))o(tim1, Y1, ) AW (L)
(6.16)

Define F;, , = F;—1 as the filtration process up to time ¢;_1. With regard to the continuous time

dynamic system (6.13) and its transformed system (6.14), the more general moments of Ay(¢;) are
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as follows:

E[Ay(t;)|Fi-1] = f(ti—1,y:,_, ) A,

E[(Ay(t:) — BIAY(t)\Fi]) x

(Ay(t) = BIAY()|Fia) 1 Fia] = oltinyi, )0l (i, At
E[AV (t;,y(ti))| Fi-1] = LV(ti-1,y(ti), v, ) At
E[(AV(ti,y(t:) — E[AV (L, y(t:))|Fi-a]) x

(AV(ti, () = EIAV (s y(tDIF DT 1Fin ] = Bty ylti1),m, )

(6.17)
where B(ti—1,y(ti—1), yt,,) = Vy(ti=1, y(tiz1))b(ti—1, yt, ) Vy(ti—1,y(ti—1))" At;, and T stands
for the transpose of the matrix.

From (6.16) and (6.17), we have

Ayi = F [Ay(ti)|f1;1] + O'(tiflaylfi_l)AWifla 1€ Il(N)

AV(ti,y(ti) = E[AV (G, y(t)Fia] + Vy(tior, y(tio1))o(tior, g, ) AW (t)
(6.18)

This provides the basis for the development of the concept of lagged adaptive expectation process
[88] with respect to continuous time stochastic dynamic systems (6.13) and (6.14). This indeed

leads to a formulation of my-local generalized method of moments at tj.

Example 1:
n -
For V (t,y) in (6.14) is defined by V' (¢,vy) = ||y|[b = 3 |¢?|P. In this case, we have
j=1

av =

P Zl Y7 P~ Lsgn(y?) £(t,yl) + P2 |y P20 (4, yf)] dt
= (6.19)
+p 3 P sgn(y? o (t, vl ) AW

j=1

Hence, the discretized form of (6.19) is given by

AV, =

pZ i P sgn(yl_ ) f (b, yl )+ 2 |yT !p‘%(ti_l,y?“)] dt
J=1 (6.20)

+p Zl [P sgn(yl ot vl )W
=
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In this special case, (6.18) reduces to

Ay; = E[Ay(t:)|Fi1] + o(ti-1,yy,_ ) AWi—1, i € Ii(N)

A(filzﬂ!”) = (ilyzlp> | Fic1
J=1 =1

Example 2:
We consider AR(1) model as another example to exhibit the parameter and state estimation prob-

+p Z ’yz 1|p 1sgn(yz 1) (ifl’ygi—l)dWij'

=
(6.21)

lem. The AR(1) model is of the following type
Xi = a;1X;1+e;, Xo=Xo, (6.22)

where X; are F; measurable, and e; are independent white noise process and independent of x.

Hence
E [ X;|Fi-1] = o1Xi-1

E [Xin'Tu:ifl] = aileileijllaszl +E [eieﬂ}—z‘fl]

(6.23)

In the following, we state a result that exhibits the existence of solution of system of non linear
equations. For the sake of easy reference, we shall re-state the Implicit function theorem without

proof.

THEOREM 6.1 Implicit Function Theorem[2] Let F = {F, F>, ..., F;} be a vector-valued func-
tion defined on an open set S € RI* with values in R%. Suppose F € Cy on S. Let (ug;vo) be a
point in S for which F(ug;vo) = 0 and for which the q x q determinant det [D;F;(ug;vo)] # 0.
Then there exists a k— dimensional open set Ty containing vy and unique vector-valued function g,
defined on T and having values in RY, such that g € C1 on Ty, g(vo) = ug, and F(g(v);v) = 0 for

everyv € Ty.

6.4 Applications for Illustrations

In the following, we give specific models for different commodities and apply the method of mo-

ments to estimate their parameters.
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6.4.1 Application 1: Dynamic Model for Energy Commodity Price

We consider a stochastic dynamic model of energy commodities described by the following nonlin-

ear stochastic differential equation

dy = ay(p — y)dt + o (t, y:)ydW (t), ys, = Po, (6.24)

where y4(0) = y(t +0); 0 € [-7,0], u,a € R; the initial process ¢, = {y(to + 0)}oc—r,0] is
Fi,-measurable and independent of {W (t),t € [0,T]}; W(t) is a standard Wiener process defined
on a filtered probability space (2, F, (F¢)¢>0, P) defined in (6.13); o : [0,7] x C — Ry is a
Lipschitz continuous and bounded functional; C is the Banach space of continuous functions defined
on [—7, 0] into R equipped with the supremum norm.
We pick a Lyapunov function V' (¢,y) = In(y) in (6.14) for (6.24). Using Ito-differential formula
[70], we have
A(n(y)) = |alu —y) — 50*(t,w) | dt -+ o(t, y)dW (1) (6.25)

By setting At; = t; —t;_1, Ay; = y; — y;_1, the combined Euler discretized scheme for (6.24) and

(6.25) is
Ay; = ayi—1(p — Y1) At + o (tiz1, Y, ) Yim1 AW (), Yty = Pos
A (ln(yl)) = [CL(/L - yi—l) - %O-Q(ti—la yti,l)] Atl + U(ti—lv ytifl)AW(ti)a Ytog = $Po-
(6.26)

where ¢y = {yi}?:ﬂ is a given finite sequence of JFy— measurable random variables, and it is
independent of { AW (t;} ;.

Applying conditional expectation to (6.26) with respect to F;, , = F;_1, we obtain

E [Ayi|Fi] = ayi-1(p — yi-1)At
E[A (In(y;)) | Fi-1] = [a(p = yi-1) = 50> (ti-1, 91,_,)] At
E [(A (n(y) — EA (n(y) 1F-a)? 1Fi | = 021 )AL
(6.27)
From (6.27), (6.26) reduces to
Ay; = E[Ayi|Fia] +o(ti-1, 9t )yi-1 AW (t:) 6.28)

An(y) = E[AIn(y:) | Fial +o(tior, ye_, AW (t:).
(6.28) provides the basis for the development of the concept of lagged adaptive expectation pro-

cess [88] with respect to continuous time stochastic dynamic systems (6.24) and (6.25).
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For k € 1(0, N), applying the lagged adaptive expectation process [88], from Definitions 6.2.3 —
6.2.7, and using (6.8) and (6.28), we formulate a local observation/measurement process at t
as a algebraic functions of mg-local functions of restriction of the overall finite sample sequence

{y;}¥_,. to subpartition P, in Definition 6.2.2 :

= k—1 =
a2 B[Ayi|Fid] = alk X v a X via| A
i=k—my i=k—my i=k—my
= =
e 2 E[A(n(y)) [Fia]l = ajp—50 X wia| At
i=k—my i=k—my
k—1
“m L E[(A(n(u0) - EIA () [Fia)* 17 |
\ i=k—my
. (6.29)
-1
ﬁ E [(A (In(y;)) — E[A (In(y:)) | Fi—1])? \.7-"2-_1} if my, is small
~2 — Z:k—mk
Gmk,k - k’—l
Gt 5 B {(A () ~ EIA (n(y0)) 1Fia))* VFica | i g s large.
1=k—my
(6.30)
From (6.30), it follows that the average volatility square 62%’ ;. 18 given by
2
s
Gk = R 6.31)

where s%%k is the local sample variance statistics for volatility at ¢; in the context of x(t;) =

A (In(y;)). We define

;

;kz,: E[Ay;|Fi-1]
Fy (B [Ayi|Fia] E[Ang)|Fioa]sa,p) = ="
:U'_ kil Yi—1 ) kil y?_l
—a i=k—my i i=k—my, At
mi my
) Tk—1
B (B[AyilFia] E[AMu) Fialion) = 5 5 E[A(ng)| 7]
1=K—Mmyg
[ = e
—a|p— s 2 Vi1 | At+ g
i:k—mk
_ (6.32)
Then we have
F]EAZfz— 7EA1nlE_ ;a, — 0,
1 (E[Ays| Fica]  E[A(Iny,) | Fizi] s a, 1) o

Fy (E[Ayi|Fia] , E[A(Iny;)|Fioa];a,1) = 0.
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Let F' = {F}, F5}. The determinant of the Jacobian matrix of F' is given by

L B, ) k=1 ’ 2
JF(a,p) = == | X Vi~ m | X wia (A1) (6.34)

= —avar(y(ti-1);o, ) (A1) #0,
provided that a # 0 or the sequence {z(t;—1)}._,_, is neither zero nor a constant. This fulfils the
hypothesis of Theorem 6.1.

Thus, by the application of Theorem 6.1 (Implicit Function Theorem), we conclude that for every

k—1

non-constant my-local sequence {x(t;) };2; .. »

there exist a unique solution of system of algebraic
equations (6.33), a,,, , and fi,,, ;. as a point estimates of a and y, respectively.

We also note that the estimated values of a and p change at each time ;. For instance, at time
to = 0 and the given F_; measurable discrete-time process 4y_,i1, Y—rt2, ..., Y—1, (6.29)-(6.30)

reduce to

0 0 0
o 2 Ay = a|E& Y wa-& Y vl A
i=—myg 1=—my 1=—my
0 0 52, 6.35
n% Z A(lnyz) = a M_mLO Z Yi—1 At — 20,0’ ( )
i=—myg i=—my
~92 o ano,o
Omyg,0 = At

The initial solution of algebraic equations (6.35) at time ¢ is given by

0 52 0 0
,0
n% > A(lny)+ m20 T,% > Yi-t —,,% > Ay
A . i=—m 0 i=—m 0 i=—m(
Amo,0 = o o 2
% 2 yf,l—% > Yi-1 At
i=—m i=—m 636
1 0 572n00 amg,0 0 ( ’ )
moAt Z A(lnyl)—‘r 2At + mq X Z Yi—1
~ i=—my i=—my
/-Lmo,O , &mo,o
~9 _ S'mO,O
O-m070 - At

Attime t; = 1 and the given J( measurable discrete-time process y_,, Y—r+1, ---, Y—1, Yo, (6.29)-

(6.30) reduce to

0 0 0

1 . — I . 1 2
2 A = al|mr 2 Y-l > Y| At

1=1—mq i=1—mq 1=1—mq
L& A L oy S (6.37)
o2 Allny) = alp—5 X Y| At— T3,

i=1—mq 1=1—m1

2

6_2 _ sml,l
m171 - At

76



The solution of algebraic equations (6.37) is given by

0 52 0 0
1 ) my,l 1 ) 1 .
<m1i_1z_:m A(lny;)+— > <ml '—12—: y”“l)ml ‘_E Ay;
A~ _ = 1 1= m1 1= ml
amy,1 = o 0 2
1 Soy2 -1 > ; At
my | i—1 mq | Yi—1
i=1l—mq i=1l—m7q
) 0 2.1 mi 0 (6.38)
A AT i:Eml A(lnyi)+—a5+ s i:gm Yi—1
Hmqi,1 = amy 1
52
6_2 — mq,1
\ “ma,l At

Likewise, for k£ = 2, we have

1 52 1 1
1 my .,k 1 1
<mQ, > A(lnyi)+2k) <m2 > yil),mz_ > Ay
d 9 _ i=2—mg i=2—mg i=2—mo
ma, - 2
1 1
1 Z 2 1 .
yi g+ > oyio1 | |At
m2 |:i—2m2 im1 T my <i—2m2 ’ >
) 1 3377,2 9 amz 5 1 (6.39)
TP i:;m2 A(lnyi)+—52+ 5 Z_:E"Q Yi—1
Hmg,2 = g 2 )
2
~2 _ Smy,2
Umg,? - At

Hence, from (6.29)-(6.30) and applying the principle of mathematical induction [69], we have

( . k=l S?nkk . k=l L k=l
oy > A(lny)+—% g > Y1 ~ g > Ay
A~ i:kfmk i:kfmk i:kfmk
a =
mk,k ) E—1 , ) E—1 2
my > Vi1 " my > Yie1 At
i=k—my i=k—myp
L k—1 sfnk kA k k—1 (6.40)
At Allny:)+ x5+ > Wil
~ _ i:kfmk 'L:kfmk
My kb = &mk,k 5
2
~92 _ SnLk,k
Omik — At

REMARK 17 We note that without loss in generality, the discrete-time data set {y_,; : i € I1(r —
1)} is assumed to be close to the true values of the solution process of the continuous-time dynamic
process. In fact, this assumption is feasible in view of the uniqueness and continuous dependence of

solution process of stochastic functional or ordinary differential equation with respect to the initial

data [70].
REMARK 18 If the sample {y; fz_kl_mk_l is a constant sequence, then it follows from (6.40) and
k—1
the fact that A(Iny;) = 0 and 52, = 0, that fip, s — mik Y. ¥i—1, and it follows from
’ Z:k—mk

(6.29)-(6.30) that d,, & = 0.

REMARK 19 As we stated before, estimated parameters a, y, and o2 depend upon the time at which

data point is drawn. This is what we expected because of the fact that nonlinearity of the dynamic
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model generates non stationary solution process. Using this locally estimated parameters of the
continuous-time dynamic system, we can find the average of this local parameters over the size of

data set as follows:

1 N
N Z a’ﬁli,l‘?
1=0
_ 1 N
Po= kY (641
N

1

N

1=0

Ql
Il

7 _ 1 2
o? = > O i
\ =0

a, i, and o2 are referred to as aggregated parameter estimates of a, z1, and o over the given entire

finite interval of time, respectively.

6.4.2 Application 2: Dynamic Model for U.S. Treasury Bill Yield Interest Rate and U. S.

Eurocurrency Exchange Rate

We also apply the above presented scheme for estimating parameters of a continuous-time model for
U.S. Treasury Bill Yield Interest Rate [128] and U. S. Eurocurrency Exchange Rate [129] processes.
By employing dynamic modeling process [69, 70], a continuous time dynamic model of interest rate

process under random environmental perturbations can be described by

dy = (By + py®)dt + oy dW (1), y(to) = yo, (6.42)

where 5, u, §, 0, v € R; y(t, to, yo) is adapted, non-anticipating solution process with respect to F;
the initial process yo is Fy,-measurable and independent of {W(t),t € [to, T]} ; W (t) is a standard
Wiener process defined on a filtered probability space (2, F, (F)¢>0, P).

For (6.42), we consider the Lyapunov functions V4 (t,y) = % and Va(t,y) = £y as in (6.14).

The Ito differentials of V;, for ¢ = 1, 2, are given by

avi = [y(By + uy’) + Soy®] dt + oy TLdW (t)

(6.43)
dV2 = [y2(5y+uy5) + 0_2y27+1] dt+0.y7+2dw(t)

Following the approach in Section 6.3 and illustration 6.4.1, the Euler discretized scheme (At =

1) for (6.42) is defined by

Ay; = (Byi—1 + pyl_y) + oyl AW ()

2 1
%A(y?) = yi—l(ﬁyi—l + My?_l) + %O—Qyijl + Uyzjl AW; (6.44)
AW = vE By +pyd_y) + 02%'21# + UyzijWi'
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Applying conditional expectation to (6.44) with respect to F;_1, we obtain

ElAylFin] = Byi1+pyd

SE [Ay])|Fic] = By, + 102%271

3E [A®))Fi] = By 1+,uy5+2+02y127fl
E[(Au - B8Rl 1Fiea] = %,

(80P R AP ] —

From (6.45), (6.44) reduces to

Ay; = E[Ay|Fici1] + oy] (AW (L)
A = SE[A@D)|Fioa] + oyl AW,
NS = IE[A@HIFio1] + oyl 7AW,

(6.45)

(6.46)

Following the argument used in (6.29)-(6.30), for £ € I(0, N), applying the lagged adaptive

expectation process [88], from Definitions 6.2.3 — 6.2.7, and using (6.8) and (6.45), we formulate

a local observation/measurement process at t; as a algebraic functions of mg-local functions of

restriction of the overall finite sample sequence {y; }7¥.
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to subpartition Py in Definition 6.2.2:

k—1
k—1 > ,
i:kfmk
+u
k—1
k—1 >
o 2 [A@)IF] - B [(Ag ~ EAWF R = 6
+u
k—1 Y
X [IEBEFRA] -] _ g™
i=k—my
+u
k—1 |
Py E[(Ayi*E[Ayilﬂfﬂ)ﬂFi,l} _ ik
i:kfmk
B 5 E[A6) -E[AG) IR I
i=k—my



Following the approach discussed in Section 6.4.1, the solution of o,,, 1 is given by

1/2
2
S
my,k
1 TYmy,,k
mr . 2 Y1
i=k—my
and 7y,,, 1 satisfies the following nonlinear algebraic equation
= +2 1 L,
2 TYmy, ,k 2 Vimgok
Sy k Z Yir" - Zsmk,k Z y,_1" =0, (6.49)
i=k—my i=k—my

where 52, , and's?, , denotes the local moving variance of Ay; and A(y7) respectively.

To solve for the parameters 3, u and §, we define the conditional moment functions

Fj = F; (E[Ayil Fical ,E [A(yi)*|Fica] JE [Awi)?| Fica]), §=1,2,3

as
; k—1 k—1
ok _:g Vi1 _:g ¥,
o= - Y ElAylFa]-B8—— s
i=k—my
k—1
1 k=1 2 i:kgm =
Bo= gy 3 [BIAGHIFA] - BB~ BAulF)P 1] | - =
i=k—my
kil y§+1
i=k—mp il
_ L
k-1 3 k—1 542
1 k=l 1 2v+1 i:kgm Yic1 i:kgm Yic1
Fs = & X {§E (A Fie1] = %y } —B— —
i=k—my
(6.50)
Using (6.47), we have
=0
F, = 0 6.51)
F; = 0
Let F' = {F}, F,, F3}. The determinant of the Jacobian matrix of F is given by
k—1 k—1 5 k—1 5
> Vi1 > Yi—1 > (Inyi—1)y;_y
i=k—my, i=k—my i=k—my
) k=l kel g kel 51
JE(B,p,0) = —-—zdet | >y, Yi-1 >, (nyi)y; 7y | #0 (6.52)
k i=k—my, i=k—my, i=k—my
s s KA 542
> Ui Yi—1 > (nyim)y "y



k—1
i=k—m

provided ¢ # 1 and the sequence {y(t;—1) . 1s neither zero nor a constant. We want to avoid

the case where 0 = 1 because this will change the structure of (6.42). Thus, by the application

of Theorem 6.1 (Implicit Function Theorem), we conclude that for every non-constant my-local

k-1
i=k—my’

sequence {y(t;) 0 # 1, there exist a solution of system of algebraic equations (6.51)
Bmk,lm fomg k—15 5mk,k as a point estimates of 3 and , and ¢ respectively.

The solution of (6.51) is given by

1 k—1 k—1 5 1 1 k—1 5 5 k—1
my > Ayi_ > Yic17 3 | my > A(yi)_smkyk ) > Y-t
I[L L o z:kfmk 'L:lcfm,]C z:kf'mk, 'L:lcfm,]C
M, - k—1 5 k—1 k—1 146 k—1
1 mp.k my,k
mik i:kX—:mkyi_lk i:kX—:mkyiz_l_i:kX—:mkyi_l * i:k—mkyi_l
k—1 . k—1 5mk7k (6‘53)
Z Ayi_ﬂmk,k Z Yi_1
A i:kfmk, i:kfmk
/Bmkzk = k=1 ?
>0 Yi-1
i:kf’mk
where 9,,, ;. satisfies the third equation in (6.47) described by
LT R i
= o2 i S . . kZ Yi—1 } kZ Yi—1
3 mg,k Ymy, k 1=R—my t=K—my
— Y AQ@hH - 3y - — =0 (6.54)
3my, my my, my
1:k—mk z:k—mk
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Chapter 7

Computational and Simulation Algorithms

7.1 Introduction

In this chapter, we outline computational, data organizational and simulation schemes. We intro-
duce the ideas of iterative data process and data simulation time schedules in relation with the real
time data observation/collection schedule. For the computational estimation of continuous time
stochastic dynamic system state and parameters, it is essential to identify an admissible set of local
conditional sample average and sample variance parameters, namely, the size of local conditional
sample in the context of a partition of time interval [—7, T']. Moreover, the discrete time dynamic
model of conditional sample mean and sample variance statistics processes in Section 6.2 and the
theoretical parameter estimation scheme in Section 6.3 motivates to outline a computational scheme
in a systematic and coherent manner. A brief conceptual computational scheme and simulation pro-

cess summary is described below:

7.2 Coordination of Data Observation, Iterative Process, and Simulation Schedules:

Without loss of generality, we assume that the real data observation/collection partition schedule P

is defined in (6.2). Now, we present definitions of iterative process and simulation time schedule.

DEFINITION 7.2.1 The iterative process time schedule in relation with the real data collection
schedule is defined by
IP={F""t;: for t; € P}, (7.1)

where F~"t; = t;_., and F~" is a forward shift operator [11].
The simulation time is based on the order p of the time series model of my-local conditional

sample mean and variance processes in Lemma 6.1.
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DEFINITION 7.2.2 The simulation process time schedule in relation with the real data observation

schedule is defined by

F'ty: for t; e P}, if p<r
op — { f boifp 2)
{FPt; : for ti € P}, if p>r.

REMARK 20 We note that the initial times of iterative and simulation processes are equal to the real
data times ¢, and t,, respectively. Moreover, iterative and simulation processes time in (7.1) and
(7.2), respectively justify Remark 17. In short, ¢; is the scheduled time clock for the collection of the
ith observation of the state of the system under investigation. The iterative process and simulation

process times are ¢; ¢, and ¢;,, respectively.

7.3 Conceptual Computational Parameter Estimation Scheme

For the conceptual computational dynamic system parameter estimation, we need to introduce a
few concepts of local admissible sample/data observation size, mg-local admissible conditional

finite sequence at t;, € SP, local finite sequence of parameter estimates at .

DEFINITION 7.3.1 Foreach k € 1(0, N), we define local admissible sample/data observation size

my, at ty, as my € OS, where

I2,r+k—-1), ifp<r,
05, =4 1 ) (7.3)
1(27p+k_1)7 ifp>7‘,

Moreover, O}, is referred as the local admissible set of lagged sample/data observation size at t.

DEFINITION 7.3.2 For each admissible my, € OS}, in Definition 7.3.1, a my-local admissible

lagged-adapted finite restriction sequence of conditional sample/data observation at t, to subpar-

tition Py, of P in Definition 6.2.3 is defined by {E[y;| Fi_1]}"=} Moreover, a my- class of

i=k—my"

admissible lagged-adapted finite sequences of conditional sample/data observation of size my, at ty,

is defined by

ASk = ({Elyi Fical Yoot o my € OSk} = ({E[wi| Fical oo Ymieos, - (7.4)

i=k—my i=k—my

In the case of energy commodity model, for each my, € OSg, we find corresponding my.- local ad-

k—1

missible adapted finite sequence of conditional sample/data observation at ty, {E[y;|Fi—1]} . -

Using this sequence and (6.40), we compute G, k. flm, i and &?nk - This leads to a local finite se-

quence of parameter estimates at ty, defined on OSy, as follows: {(dmk k> Homg s 672)1,9 k)} =
’ ’ ’ m€O0Sy
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. R . ke . N . k-1
{(amkak7umk7k7J?flk,k)}:;';GQI Or{(amkvk’/’Lmkvk’a—?nk,k)}fnkEQ *

It is denoted by (A, M, Sk’)z{(&mk,ka g ke 672%,16)}7” o8
k k

7.4 Conceptual Computation of State Simulation Scheme

For the development of a conceptual computational scheme, we need to employ the method of

induction. The presented simulation scheme is based on the idea of lagged adaptive expectation

2

process [88]. An autocorrelation function (ACF) analysis [11, 14] performed on s;,

.k suggests
that the interconnected discrete time dynamic model of local conditional sample mean and sample
variance statistics in (6.8) is of order p = 2. In view of this, we need to identify the initial data.
We begin with a given initial data ys,, {82, 0 }mocOSo» {5m_, 1} m_1€05_1> {Sm_, 1 }m_1€0S_,-
Let y,,  be a simulated value of E[yy|Fj_1] at time ¢, corresponding to an admissible sequence

{Elys| Fi1] o)} . € ASj. This simulated value is derived from the discretized Euler scheme

i=k—m
(6.26) by

yfnk ,k} = y’fnk_l ,k)—l +&mk71 1k_1 (ﬂmkfl 7k_1 _yfnk_l ,k‘—l )yfnk_l ,k—lAt—i—é-mkfl Jf—lyfnk_l ,kf—l Aka )k'
(7.5)
Let {y;;k i ym,c0s;,, be a my- local sequence of simulated values corresponding to my-admissible
lagged adapted finite sequence of conditional observation belonging to ASj and corresponding
term of sequence (A, My, Sg). Thus, {yfnk k}mkEOSk is the finite sequence corresponding to finite

simulated values of E[yx|Fi_1] at t.

7.5 Mean-Square Sub-Optimal Procedure

To find the the best estimate of E[yy|Fj—1] using a local admissible finite sequence {yfnk i JmicOS),
of simulation of {E[y;|F;_1]}, we need to compute a finite sequence of quadratic mean square error

corresponding to {yfnk i ymye0s, - The quadratic mean square error is defined below.

DEFINITION 7.5.1 The quadratic mean square error of E[yy|Fi_1] relative to each member of the

term of local admissible sequence {y;k & tmec0s,, of simulated values is defined by

—_ s 2
Bk = (ElYel Freo1] — Ui, 1) - (7.6)

For any arbitrary small positive number € and for each time ¢, to find the the best estimate from

the admissible simulated values of simulated sequence of {yf;lk i ymieos, for Elyg|Fi_1], we de-
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termine the following sub-optimal admissible set of my-size local conditional sample
M = {mk : Emk,k,yk < € for my € OSk} (71.7)

Among these collected values, the value that gives the minimum =,,, . ,, is recorded as my. If
more than one value of my, exists, then the largest of such my’s is recorded as 1. If condition
(7.7) is not met at time ¢}, the value of mj where the minimum r?nlgl Emu,k,y, 18 attained, is recorded
as Mmy. The e— level sub-optimal estimates of the parameters dy,, i, flmn, x and 572%, i, at My are
also recorded as ayy,, k, fhi, k and ‘772%%, «» respectively. Finally, the simulated value yfnk ;; at time
t). with my, is now recorded as the best estimate for E[yx|Fi_1] at ¢5. This value is called the e—
sub-optimal simulated value y;, . of E[yx|Fk_1] at t;. Similar reasoning can be provided for the
estimates of the parameters of the U.S. Treasury Bill Yield Interest Rate and U. S. Eurocurrency

Exchange Rate model. A detailed flowchart of the conceptual algorithm is as follows:

Flowchart 1: LLGMM Conceptual Computational Algorithm.

my- local admissible my-local
For each admissible adapted finite sequence parameter estimate Simulated Estimate for
my € OSy, atty, {]E[yl\}}_l]}f;k{mk (g s Fmy e 62, 1) Elyr|Fi—1] at tx is vy, &
of size my, at ty, at ty

Test for e-sub optimality | yes |For M, # () e-suboptimal 7oy, yes | €-suboptimal estimate
of estimate y7 my, € Mg M = DU Sk Yy ke 0T By Fr—1]

For M), # 0 and Choose the

no
0OS), — My, Delete not unique largest my,
no For M, = 0)

Moreover, a detailed simulation algorithm is presented in C.4

7.6 Applications: Four Energy Commodity Data Sets

Now, we apply the above conceptual computational algorithm for the real time data sets namely
daily Henry Hub Natural gas data set for the period 01,/04,/2000-09/30/2004, daily crude oil data
set for the period 01/07/1997 — 06/02/2008, daily coal data set for the period of 01/03/2000 —
10/25/2013, and weekly ethanol data set for the period of 03/24,/2005 — 09/26,/2013, [22, 24, 23,
136]. Using At = 1, € = 0.001, r = 5, and p = 2, the e— level sub-optimal estimates of parameters

a, 1t and o2 at each real data times are exhibited in Table 6.
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Table 6: Estimates my, O'%lk’k, Moy, & and Qg g

tr Natural gas tr Crude oil tr Coal tr Ethanol
M Op g Heigk ek W ok g Mgk [ M Ok ok Mgk Gmigk Mk Of g Mgk Gnigk
5 3 0.0001 22231 0.6011 5 3 0.0001 244100 0.0321 5 3 0.0001 115534 00142 | 5 2 0.0002 1.1767 0.5831
6 3 0.0002 22160 0.6122 6 3 0.0002 247165 0.0341 6 3 0.0000 112529 04109 | 6 5 0.0008 1.1717 0.5159
7 3 0.0002 22513 0.6087 7 4 0.0003 255946 0.0537 7 3 0.0001 99161 0.0165 | 7 4 0.0007 1.1707 1.4925
8 4 0.0002 22494 0.1628 8 5 0.0006 255550 0.0467 8 3 0.0002 11.4663 -0.0403 | 8 5 0.0008 1.1713 1.4791
9 4 0.0002 22658 -0.1497 9 4 0.0006 25.5695 0.0499 9 3 0.0005 10.5922 -0.0843 | 9 5 0.0006 1.1709 2.1406
10 | 4 0.0003 2.1371  0.1968 10 4 0.0004 254787 0.0221 10 4 0.0009 89379 0.0714 | 10 | 4 0.0004 1.1900 0.8621
11 4 0.0004 25071 -0.2781 11 3 0.0001 257742 0.0100 11 4 0.0023 89051 0.1784 | 11 3 0.0025 1.1900 0.3719
12 | 4 0.0000 2.2550 0.3545 12 3 0.0002 269477 -0.0157 12 3 0.0015 9.0169 0.0855 | 12 | 3 0.0004 12188 0.5368
13 | 4 0.0005 25122 0.6246 13 3 0.0001 258786 -0.0112 13 3 0.0020 8.6231 0.0739 | 13 | 5 0.0004 1.1120 12.2917
14 | 4 0.0015 24850 0.5604 14 5 0.0005 22.1834 0.0049 14 2 0.0001 10.0100 0.0564 | 14 | 5 0.0007 1.1669 -0.9289
15 | 3 00007 25378 0.4846 15 5 0.0004 235425 0.0010 15 5 0.0067 9.5281 0.0741 | 15 | 5 0.0014 0.7492 -0.0879
16 | 3 0.0007 25715 0.7737 16 4 0.0002 23.8500 0.0000 16 4 0.0058 6.1821 0.0694 | 16 | 5 0.0011 1.7968 0.3087
17 | 5 0.0011 2.5688  0.5984 17 4 0.0002 23.8486 0.0502 17 4 0.0015 8.8087 0.0404 | 17 | 5 0.0002 1.8484 -0.1901
18 | 4 0.0010 2.5831 0.5423 18 5 0.0004 232913 -0.0113 18 4 0.0035 9.0681 0.0652 | 18 | 5 0.0003 1.1650 -0.1611
19 | 5 0.0007 2.5893 0.4256 19 3 0.0000 244715 0.1282 19 3 0.0040 9.0752 0.1527 | 19 | 5 0.0022 1.8943 0.1502
20 | 5 0.0006 2.6100 0.0683 | 20 3 0.0004 243878 0.0415 20 3 0.0049 9.0801 0.1405 | 20 | 5 0.0047 1.8144 0.2073
781 | 3 0.0001 6.2830 0.0307 | 2446 | 4 0.0001 59.6591 0.0012 | 2871 | 5 0.0008 26.9028 0.0131 | 281 | 3  0.0003 1.6026 -1.8731
782 | 4 0.0004 5.6052 0.0450 | 2447 | 5 0.0007 59.5048 0.0059 | 2872 | 5 0.0008 26.7876 0.0158 | 282 | 5 0.0007 1.7479 0.2390
783 | 4 0.0009 59775 0.0996 | 2448 | 4  0.0005 58.9636 0.0050 | 2873 | 4 0.0003 26.6849 -0.0313 | 283 | 4 0.0010 3.7451 0.0171
784 | 4 0.0230 13.6910 0.3781 | 2449 | 5 0.0004 584700 0.0042 | 2874 | 5 0.0008 25.7722 0.0231 | 284 | 5 0.0008 1.9909 0.0267
785 | 5 0.0189 9.7555 -0.1031 | 2450 | 4 0.0002 58.5012 0.0071 | 2875 | 4 0.0009 255993 0.0253 | 285 | 5 0.0005 1.8650 0.5265
786 | 5 0.0213 9.2861 0.0550 | 2451 | 4 0.0003 59.2442 0.0048 | 2876 | 5 0.0007 25.6284 0.0544 | 286 | 5 0.0016 1.8887 1.1808
787 | 5 0.0149 92482 0.0501 | 2452 | 4 0.0003 59.0349 -0.0015| 2877 | 4 0.0006 252403 0.0364 | 287 | 5 0.0014 1.2920 0.1535
788 | 5 0.0083 9.1330 0.0985 | 2453 | 5 0.0004 59.2438 0.0006 | 2878 | 5 0.0009 25.3519 0.0301 | 288 | 5 0.0006 2.0086 0.5159
789 | 5 0.0161 65570 02080 | 2454 | 5 0.0004 60.1814 0.0033 | 2879 | 4 0.0005 25.0336 0.0528 | 289 | 4 0.0042 1.9985 0.4236
790 | 5 00114 7.0045 0.0989 | 2455 | 4 0.0003 59.9567 0.0091 | 2880 | 5 0.0006 25.2560 0.0963 | 290 | 4 0.0030 1.9857 0.5156
791 | 5 00071 0.5917 0.1034 | 2456 | 5 0.0004 59.6785 0.0025 | 2881 | 4 0.0003 253842 0.0438 | 291 | 4 0.0023 2.0219 0.8551
792 | 5 0.0096 69603 0.1118 | 2457 | 4 0.0004 58.7682 0.0049 | 2882 | 3 0.0006 25.5547 0.0552 | 292 | 5 0.0030 2.2320 0.2054
793 | 5 0.0045 6.8894 0.0341 | 2458 | 4 0.0003 58.4793 0.0086 | 2883 | 3  0.0005 255867 0.0719 | 293 | 4 0.0009 22062 0.0655
794 | 5 0.0056 73016 02594 | 2459 | 4 0.0001 57.9168 0.0053 | 2884 | 5 0.0008 25.5035 0.0649 | 294 | 3  0.0009 2.3554 0.0893
795 | 5 0.0049 39781 03501 | 2460 | 4 0.0004 56.1216 0.0177 | 2885 | 3  0.0004 255128 0.0690 | 295 | 3  0.0018 23115 0.5336

Table 6 shows the estimates of the e- sub-optimal size My, the parameters afh woks Pk and @y, for each of the

energy commodity data sets. Moreover, p < r, and the initial real data time is ¢, = 5.

In the following, the graph of a,, j for daily natural gas, daily crude oil, daily coal, and weekly

ethanol are exhibited in Figure 8 (a), (b), (c) and (d), respectively.
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Figure 8.: The graph of mean reverting rate ay, j with time ¢,

Figures 8: (a), (b), (c)and (d) are the graphs of a,, » against time ¢ for the daily Henry Hub natural gas data set

[24] , daily crude oil data set [23], daily coal data set [22], and weekly ethanol data set [136], respectively. It shows the

rate at which the data sets are reverting to the mean level.

Furthermore, we show the graphs of ji,;, . for each of the data set: Natural gas, Crude Oil, Coal

and Ethanol in Figure 9 (a), (b), (c) and (d), respectively.

87



Graph of | against 1, for Natural Gas
y

(a)

. . I .
200 400 600 600
time t, (days)

Graph of y,_  against 1, for Coal
y

-150
0

L L L L
1500 2000 2600 3000

time t, (days)

L L
500 1000 3500

-300

a00

Graph of b against t,_for Crude Oil
»

()

1]

L L L L L L L
1000 1500 2000 2500 3000 3500 4000

500 4500
time t, (days)
Graph of y,_ | against 1, for Ethanol
¥
. . . . . 1 . .
50 100 180 200 250 300 350 400 450

time t, (weeks)

Figure 9.: The graph of mean level ji,3,, 5, with time

Figures 9: (a), (b), (c)and (d) are the graphs of p.s, » against time ¢z for the daily Henry Hub natural gas data set

[24], daily crude oil data set [23], daily coal data set [22], and weekly ethanol data set [136] respectively. The sample

means of the real data y;, sets for Natural gas, Crude oil data and Coal data are given by 4.5385, 54.0093, 27.1441 and

2.1391 respectively. It can be seen from Figure 9: (a) that the graph of ji, » for the Henry Hub Natural gas data set

moves around the mean value 4.5385 of the real data set. Also, from Figure 9: (b), the values of p, & for the crude oil

data moves around the mean value 54.0093 of the crude oil data set. Likewise, from Figure 9: (c), the values of ps,, &

for the coal data moves around the mean value 27.1441 of the coal data set. Finally, from Figure 9: (d), the values of

My, k for the ethanol data moves around the mean value 2.1391 of the ethanol data set. This analysis shows that the

parameter [i,y, .k is close to the respective mean of the data set at time ¢x.

We remark that {s5,, ;})¥, and {a, ;}}¥, are discrete-time e— sub-optimal simulated random

samples generated by the scheme described at the beginning of Section 7.6.
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Next, we show the graph of sfhk’ i Tor each of the data set: Natural gas, Crude oil, Coal and

Ethanol in Figures 10 (a), (b), (c) and (d), respectively.
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Figure 10.: Moving Variance s%l ;. against k for three commodities
k>

Figures 10: (a), (b), (c) and (d) are graphs of sfnk &, against time ¢ with initial delay r =

450

5 for the daily Henry

Hub natural gas data set [24] , daily crude oil data set [23], daily coal data set [22], and weekly ethanol data set [136]

respectively. We found these estimates using the discrete time dynamic model (6.8) with p = 2, with the usage of p = 2

because of the autocorrelation and partial autocorrelation function of the series x, as described in [80]. Using the third

part of (6.53), the volatility square at time ¢ can be calculated.

The overall descriptive statistics of data sets regarding the energy commodity prices and estimated

parameters are recorded in the Table 7.
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Table 7: Descriptive Statistics for a, y and o2

Data Set Y Y Std(Y) | Aln(Y) | var(Aln(Y)) a Std(a) Iz Std () o2 std(o?) 95% C.L &

Nat. Gas 4.5504 | 1.5090 | 0.0008 0.0015 0.1867 | 0.3013 | 4.5538 | 2.3565 | 0.0013 | 0.0017 | (4.4196, 4.6880)

Crude Oil || 54.0093 | 31.0248 | 0.0003 0.0006 0.0215 | 0.0517 | 54.0307 | 37.4455 | 0.0005 | 0.0008 | (51.8978, 56.1636)
Coal 27.1441 | 17.8394 | 0.0003 0.0015 0.0464 | 0.0879 | 27.0567 | 21.3506 | 0.0014 | 0.0022 | (25.8405, 28.2729)
Ethanol 2.1391 | 0.4455 | 0.0011 0.0020 0.3167 | 0.8745 | 2.1666 | 0.7972 | 0.0018 | 0.0030 (2.0919,2.2414)

Table 7 shows the descriptive statistics for a, ; and o with time delay r = 5. Note that the mean value of the estimated

N N . N
samples {arhi,i}f\éo, {:u’ﬁliﬂ'}éio and {U%Li,i}iio are a = % ;}amwi’ b= % ;}/’Lﬁli’i and 02 = % 2}0—72?”,1'7

i i= i=
respectively. @, fi, and o2 are referred to as aggregated parameter estimates of a, 1, and o2 over the given entire finite
interval of time, respectively. i is the descriptive statistics of the parameter u estimated in column 8, while o2 is the
descriptive statistics of the parameter o2 estimated in column 10. Moreover, [i is approximately close to the overall
descriptive statistics of the mean Y of the real data set for each of the energy commodities shown in column 2. Also, 02
is approximately close to the overall descriptive statistics of the variance of Aln(Y) = In(Y;) — In(Y;—1) in Column 5.

Moreover, column 12 shows that the mean of the actual data set in Column 2 falls within the 95% confidence interval of

. This exhibits that the parameter (i, % is the mean level of yx at time ¢x.

We have used the the estimated parameters a,, k, [y, k> and afhk’k in Figures 8, 9, and 10,
respectively to simulate the daily natural gas data set, daily crude oil data set, daily coal data set,
and weekly ethanol data set.

In fact, developing the code and flowchart described in C.4 and the parameters described in
Figures 8, 9 and 10, we simulate the daily Natural Gas data set, daily Crude Oil data set, the daily
Coal data set and weekly ethanol data set.

For this purpose, we pick € = 0.01; for each time ¢, the estimates of the simulated prices y;,
are computed by determining the sub-optimal admissible set of my-size local conditional sample
M, defined in (7.7). Among these collected values, the value that gives the minimum =,,,, .,
is recorded as my. If condition (7.7) is not met at time tj, the value of m; where the minimum
glnigl Emy k,y, 18 attained, is recorded as 1my,. The e— level sub-optimal estimates of the parameters
dmlk’k, fim,, x and &Tan,k at my, are also recorded as @y, k, [,k and U%%k, the value of yfnkk at
time ¢;, and 7y, corresponding tO Gy, k> iy, k and U?hk, ;. 18 also recorded as the e— sub-optimal
simulated value yz, , as an estimate of yj. A detailed algorithm is given in Appendix C'.4.

Finally, in Table 8, we show the results of the real, simulated prices using the local lagged adapted

generalized method of moment (LLGMM) and the simulated price using the aggregated parameter
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estimates @, fi, and o2 in Table 7, Column 6, 8, and 10, respectively for the energy commodity price.
This estimate is derived using the discretized model

—1/2

yi? =yt +ali — g2 )yt At + o2y AW (7.8)

For the rest of this study, we define this estimate ygg at time ¢, by the aggregated GMM simulated
estimates (AGMM).

Table 8: Real, Simulation using LLGMM prices, and Simulation using AGMM.

ty Natural gas tr Crude oil tr Coal tr Ethanol
Real  Simulated Simulated Real Simulated ~ Simulated Real Simulated ~ Simulated Real  Simulated Simulated
Yook v’ Y b v’ Yk v Yok g
(LLGMM) (AGMM) (LLGMM) (AGMM) (LLGMM) (AGMM) (LLGMM) (AGMM)
5 2216 2.216 2216 5 25.200 25.200 25.000 5 10.560 10.560 10.000 5 | 1.190 1.190 1.000
6 2.260 2.253 2.276 6 25.100 25.077 25.501 6 10.240 10.436 10.150 6 | 1.150 1.174 1.233
7 2.244 2.241 2.255 7 25.950 25.606 25.612 7 10.180 10.325 10.555 7 | 1.180 1.180 1.321
8 2.252 2.249 2.255 8 25.450 25.494 26.011 8 9.560 10.072 10.160 8 | 1.160 1.148 1.277
9 2322 2.329 2.291 9 25.400 25411 26.038 9 8.750 8.338 10.610 9 | 1.190 1.196 1.318
10 | 2.383 2.376 2.362 10 | 25.100 24.981 25.099 10 9.060 9.072 10.936 10 | 1.190 1.209 1.395
11 | 2417 2.417 2.201 11 | 24.800 24.763 25.715 11 8.880 9.084 10.624 11 | 1.225 1.186 1.398
12 | 2.559 2.534 2.182 12 | 24.400 24.301 25.670 12 9.440 9.581 10.174 12 | 1.220 1.217 1.473
13 | 2485 2.554 2.022 13 | 23.850 24.862 26.176 13 | 10.310 9.739 9.807 13 | 1.290 1.250 1.489
14 | 2.528 2.525 2.016 14 | 23.850 23.961 26.142 14 9.810 9.633 9.548 14 | 1410 1.320 1.459
15 | 2.616 2.615 2.057 15 | 23.850 24.010 26.602 15 9.060 9.197 9.904 15 | 1.470 1.392 1.451
16 | 2.523 2.478 2.122 16 | 23.900 24.071 26.094 16 8.750 8.806 9.888 16 | 1.530 1.461 1.378
17 | 2.610 2.638 2.181 17 | 24.500 24.554 26.051 17 8.820 8.879 9.878 17 | 1.630 1.545 1.275
18 | 2.610 2.606 2.265 18 | 24.800 24.795 25.973 18 9.560 9.326 10.095 18 | 1.750 1.7433 1.284
19 | 2.610 2.614 2.356 19 | 24.150 24.165 26.385 19 8.820 8.749 10.158 19 | 1.750 1.858 1.189
20 | 2.699 2.726 2.430 20 | 24.200 23.971 25.817 20 8.820 8.774 10.180 20 | 1.840 1.886 1.224
1145 | 5.712 5.709 5.356 2440 | 57.350 57.298 64.878 | 2865 | 29.310 29.065 28.288 375 | 2.073 2.019 2.068
1146 | 5.588 5.592 5.464 2441 | 56.740 56.650 64.333 | 2866 | 28.680 28.619 26.839 | 376 | 2.020 2.003 1.948
1147 | 5.693 5.650 5.610 2442 | 57.550 57.613 64.350 | 2867 | 26.770 28.408 26.448 377 | 2.073 2.094 1.868
1148 | 5.791 5.786 5.489 2443 | 59.090 59.152 64.319 | 2868 | 27.450 27.480 26.555 378 | 2.065 2.076 1.898
1149 | 5.614 5.458 5.682 2444 | 60.270 58.926 65.331 2869 | 27.000 27.250 27.808 379 | 2.055 2.061 1.803
1150 | 5.442 5.460 6.047 2445 | 60.750 59.675 64.43 2870 | 26.670 26.544 26.804 | 380 | 2.209 2.169 1.869
1151 | 5.533 5.571 6.192 2446 | 58.410 59.408 66.356 | 2871 | 26.510 26.497 27.429 | 381 | 2.440 2.208 1.764
1152 | 5.378 5.397 6.251 2447 | 58.720 58917 65.789 | 2872 | 26.480 26.463 28.481 382 | 2.517 2.220 1.687
1153 | 5.373 5.374 6.085 2448 | 58.640 58.502 61.865 2873 | 25.150 25.781 29.022 | 383 | 2.718 2.362 1.744
1154 | 5.382 5.420 5.901 2449 | 57.870 58.721 64.171 2874 | 25.570 25.615 28.829 | 384 | 2.541 2.687 1.716
1155 | 5.507 5.501 5.986 2450 | 59.130 58.985 64.001 2875 | 25.880 25.948 29.549 | 385 | 2.566 2.607 1.785
1156 | 5.552 5.551 5.632 2451 | 60.110 60.087 64.234 | 2876 | 25.240 25.451 29.080 | 386 | 2.626 2.549 1.716
1157 | 5.310 5.272 5.525 2452 | 58.940 58.858 64.419 | 2877 | 25.000 24.649 29.392 | 387 | 2.587 2.606 1.816
1158 | 5.338 5.348 5.183 2453 | 59.930 59.390 62.080 | 2878 | 25.080 24.984 28.834 | 388 | 2.628 2.624 1.761
1159 | 5.298 5.353 5.024 2454 | 61.180 60.283 59.690 | 2879 | 25.050 25.158 29.122 | 389 | 2.587 2.556 1.909
1160 | 5.189 5.207 5.025 2455 | 59.660 59.939 60.680 | 2880 | 25.890 25.835 31.099 | 390 | 2.536 2.546 1.969

Next, we show the graph of the simulated data set using the LLGMM method for each of the

commodities in Figure 11.
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Figure 11.: Real and Simulated Prices: r» = 5.

Figures 11: (a), (b), (c) and (d) show the graph of the Real and Simulated Spot Prices for the daily Henry Hub natural
gas data set [24] , daily crude oil data set [23], daily coal data set [22], and weekly ethanol data set [136] respectively.
The red line represents the real data set yy, while the blue line represent the simulated data set y;,, ;. The root mean
square error of the simulation for the Henry Hub Natural gas data set, the Crude Oil data set, the Coal and Ethanol data
set are given by 0.021, 0.013, 0.015, and 0.046 respectively. Here, we begin by using a starting delay of » = 5. The
simulation starts from ¢, = ts. It is clear that the graph fits well, but there are still some regions where the simulation

does not capture the real data well. Therefore, this gap is analyzed by increasing the magnitude of time delay.

The following graphs show the Real and Simulated Spot Prices for the daily Henry Hub natural
gas data set [24] , daily crude oil data set [23], daily coal data set [22], and weekly ethanol data set

[136], respectively, for the case where r = 10.
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Figures 12: (a), (b), (¢) and (d) show the graph of the Real and Simulated Spot Prices for the daily Henry Hub Natural

gas data set [24] , daily Crude Oil data set [23], daily Coal data set [22], and weekly ethanol data set [136], respectively,

for r = 10. The red line represents the real data set yx while the blue line represent the simulated data set y3,, ;. The

root mean square error of the simulation for the Henry Hub Natural gas data set, the Crude Oil data set, the Coal data set,

and ethanol data set are given by 0.004, 0.001, 0.002 and 0.006, respectively.

REMARK 21 Several other delays were tested and it was found that as the delay r increases, the

root mean square error decreases, significantly. Moreover, the curve fitting appears to be better. For

example, for starting delay of 20, the root mean square error of the simulation for the Henry Hub

natural gas data set, the crude oil data set, coal data set and ethanol data set are given by 2 x 1074,

107°,1074, and 5 x 104, respectively. Furthermore, the simulation results show that the price of a

commodity is affected by its volatility afhk ;-» the rate and mean level parameters a,, , and (i, k.

respectively.
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In Figure 13, we show a comparison between the real data set, simulated price using the local
lagged adaptive generalized method (LLGMM) and the simulated price (AGMM) using the aggre-

gated parameter estimates a, ji, and o2 in Table 7 , Column 6, 8, and 10, respectively.

Real, Simulated LLGMS, Simulated for Natural Gas Real, Simulated LLGMS, Simulated for Crude Oil
1" T T I T T 150 T T T T T
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Figure 13.: Real, Simulated Prices using (LLGMM), and Simulated Prices using AGMM.

Figures 13: (a), (b), (¢) and (d) show the graph of the Real, simulated prices using the local lagged adaptive general-
ized method (LLGMM), and the simulated price using the average of the parameters for Henry Hub Natural gas data set
[24], daily Crude Oil data set [23], daily Coal data set [22], and weekly ethanol data set [136], respectively, for r = 5.
The red line represents the real data set yy, the blue line represent the simulated prices using LLGMM method, while
the black line represent the simulated price (AGMM) using the aggregated parameter estimates @, fi, and o2 in Table 7,
Column 6, 8, and 10, respectively. From these simulated graphs, it is clear that the LLGMM simulation results are more

realistic than the AGMM simulation results. This exhibits the power of LLGMM over the AGMM.

REMARK 22 A code similar to the flowchart described in C.4 is designed to exhibit the flowchart

algorithm. All the codes for the parameter estimation, simulations and forecasting are written and
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tested using Matlab program. Due to the online control nature of my in our model, it is worth
mentioning that the running times for each of the four commodities: Natural gas, Crude oil, Coal
and Ethanol depend on the robustness of the data. The average running time for each data set is 25

minutes.

In reference to Remark 16, we compare the estimates s%nk . With the estimate derived from the

usage of a GARCH(1,1) model described in [9] which is defined by

Zt‘Ft—l ~ N(O, ht),

ht = oo+ athi—1+ 512,:2_17 ag >0, ag, 81 > 0.

(7.9)

The parameters ag, a1, and 31 of the GARCH(1,1) conditional variance model (7.9) for x for
the four commodities natural gas, crude oil, coal, and ethanol are estimated. The estimates of the

parameters are given in Table 9.

Table 9: Parameter estimates for GARCH(1,1) Model (7.9).

Data Set op o1 051

Natural Gas || 6.863 x 107° | 0.853 | 0.112
Crude Oil || 9.622 x 107° | 0.917 | 0.069
Coal 3.023 x 107° | 0.903 | 0.081
Ethanol 4.152 x 107* | 0.815 | 0.019

Table 9 shows the parameter estimates for GARCH(1,1) Model

We later show a side by side comparison of s%%k and the volatility described by GARCH(1,1)

model described in (7.9) with coefficients in Table 9.
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Figure 14.: sfhk  and GARCH(I,1) .

Figures 14: (a), (b) and (c) are graphs of sfﬁk & and GARCH(1,1) model against time tj, for the daily Henry Hub nat-
ural gas data set [24] , daily crude oil data set [23], daily coal data set [22] and weekly ethanol data set [136] respectively.
The blue line shows the graph of estimates for s2, .,k and the red line shows the graph of estimates for GARCH(1,1)
model. The GARCH model does not clearly estimate volatility as heavily evidenced in Figure 14 (d). In fact, it de-
mostrated insensitivity. The presented analysis suggests that the GARCH model is ineffective in comparison with the

framework of moving average process.

We also compare the simulations in Figure 11 with the simulations using the GARCH(1,1) model

(7.9) as the conditional variance. The following figure exhibits the comparison.
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Figure 15.: Simulation derived by using sfhk . and GARCH(1,1)

Figures 15: (a), (b), (c) and (d) are graphs of the simulations using sfhk’k and GARCH(1,1) model to estimate the
volatility process for the daily Henry Hub Natural gas data set [24] , daily Crude oil data set [23], daily Coal data set [22],
and weekly Ethanol data set [136], respectively. The blue line shows the graph of estimates for the simulations using
GARCH(1,1) model to simulate the volatility, the green line is our simulated estimates described in Figure 11, and the
red line shows the real data set. It can be seen that the GARCH model fails to capture most of the spikes in the data set.
Moreover, the GARCH model creates significant errors by over-and-under estimating the variance. These spikes were
perfectly captured in Figure 11 where we use the discrete-time dynamic model of local sample variance statistics process
to estimate the volatility process. This illustrates that the dynamic statistic model works better than the GARCH volatility

model.
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7.7 Applications: U. S. Treasury Bill Yield Interest Rate and U. S. Eurocurrency Exchange
Rate Data Sets

In this subsection, we apply the conceptual computational algorithm discussed above to estimate
the parameters in (6.42) using the real time Treasury bill yield data sets [128] and the US dollar

Eurocurrency data set [129] collected from Forex database.

Table 10: Estimates 1y, By, ks> Mg ks Orivg k> Oring k> Vg, k fOr U. S. Treasury Bill Interest Rate.

tr Interest Rate

S

By k Horiy Omink Omigk  Vmigk
1.342 6.1344 1.23 0.0650 1.46
-1.4536  7.7969 1.4600 0.0740 1.4963
-1.9051 15.5056  1.4600 0.0973 1.4942
0.3703  -1.8563 1.4600 0.2681 0.5218
0.3209 -1.46591 1.4600 0.2674 1.1845
0.8104  -4.0798 1.4600 0.2605 1.0916
2.0471 -10.3264 1.4600 0.0948 1.4632
22642 -11.4387 14600 0.0692 1.4335
-3.5423  17.8429 1.4600 0.0660 1.4989
0.7275  -3.7090  1.4600 0.0734 1.4835
0.9500 -4.8475 0.0688 1.4968
1.8567 -9.4523 1.46000 0.0836 1.4998
-0.0187  0.1323 1.46000 0.1289 1.4990
-0.2657 1.4233 14600 0.1148 1.4168
-1.6380 -8.3661 1.4600 0.2017 1.0316
-0.3631  -1.9923 1.4600 0.2236 0.9800

O o 9 N W

—
[\ 9]
S Y T Y ST SO S VR S U S U U S SR C N O I~

420 | 5 3.8416 -18.3309 1.4600 0.1187 1.4986
421 | 4 20695 -9.8104 1.4600 0.1594 1.4906
422 | 4 14882 -7.0240 1.4600 0.1643 1.2216
423 | 4 1.1992  -55523  1.4600 0.1899 1.3399
424 1 4 1.2800 -5.9315 1.4600 0.1814 1.4736
4251 5 04408 -1.9812  1.4600 0.1901 1.4961
426 | 5 -0.5137  2.4739 1.4600 0.1616 1.4972
427 1 5 0.0508 -0.1078  1.4600 0.1547 1.4994
428 | 5 -0.0623  0.3913 1.4600 0.1174 1.4975
429 | 5 01269 -04112 14600 0.1175 1.5050
430 | 5 01828  -0.6611 1.4600 0.0856 1.4983
4311 5 04780 -1.9674 1.4600 0.0765 0.1008
4321 5 05655 -2.3219  1.4600 0.0719 1.0406
433 | 5 1.4002 -5.8583  1.4600 0.0839 1.3915
4341 5 1.9290 -8.0357 1.4600 0.1145 1.4369
4351 4 0.6095 -2.4585 1.4600 0.2260 1.2307
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Table 11: Estimates 1, B, ks g ks Oring k> Oring, k> Vg, k T0r U.S. Eurocurrency Exchange Rate.

tr US Eurocurrency Exchange Rate

e Buigk Mok Omipk  Omipk ik

0 0 1.4892 0 1.2404

—_

-0.8614  0.6922 1.4892 0.0203 1.4636
-1.5672  1.2363 1.4892 0.0206 1.4996
1.9150 -1.4001 1.4892 0.0614 -0.5243
0.8849 -0.6401 1.4892 0.0562 0.3397
-9.3647  6.8531 1.4892 0.0170  1.4967
1.2713  -0.9156 1.4892 0.0422 1.4892
1.6414 -1.1824 1.4892 0.0138 0.9651
29985 -2.1536 1.4892 0.0153 -1.7912
3.2093  -2.3045 1.4892 0.0091 0.7281
03170 -0.2468 1.4892 0.0411 1.4999
0.6723  -0.5221 1.4892 0.0482 1.3425
0.4002 -0.3101 1.4892 0.0401 0.2017
0.4562 -0.3666 1.4892 0.0425 0.3349
1.3955 -1.0776 1.4892 0.0467 1.4892
1.9070 -1.4757 1.4892 0.0166 1.4933

—_
w
LS IR R T S~ B SR A S N

155 | 3 23290 -1.8636 1.4892 0.0049 1.0646
156 | 4  2.8385 -2.2656 1.4892 0.0132 1.0755
157 | 5 -04474 0.3668 1.4892 0.0280 1.5024
158 | 5 1.5170 -1.2021 1.4892 0.0356 1.5540
159 | 5 1.6898 -1.3382 1.4892 0.0356 1.1792
160 | 5 22439 -1.7720 1.4892 0.0357 1.4624
161 | 4 -0.5436 0.4407 1.4892 0.0185 1.4976
162 | 3 03131 -0.2332 1.4892 0.0144 1.4375
163 | 3 29744 -2.3248 1.4892 0.0240 1.2378
164 | 5 1.4940 -1.1744 1.4892 0.0182 0.7835
165 | 5 27775 -2.1773 1.4892 0.0225 1.4995
166 | 5 1.9622  -1.5328 1.4892 0.0255 1.1941
167 | 4 0.8564 -0.6573 1.4892 0.0342 0.7930
168 | 4 0.7604 -0.5650 1.4892 0.0353 1.4061
169 | 5 0.5422 -0.3945 1.4892 0.0329 0.6155
170 | 4 0.1764 -0.1124 1.4892 0.0257 1.3552

Tables 10-11 show the estimates for the e- sub-optimal size 7y, the parameters Bus, k> Umiy, k > Onig k> Orniy k> and
Vi, & for the U. S. Treasury Bill Yield Interest Rate and U. S. Eurocurrency Exchange Rate, respectively. The initial real

data time is ¢, = t5.
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Using e = 1 x 1073, 7 = 5, and p = 2, the e— level sub-optimal estimates of parameters /3, 1,

0, o and ~y for each Treasury bill real data set and U.S. Eurocurrency rate data sets are exhibited in

Tables 10 and 11, respectively.

Next, we show the graphs of 3., 1, Uiy k » Omiy k> Onig k> and Vi, 1 for the Monthly Treasury

bill data set and Monthly U. S. Eurocurrency data set.
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Figures 16: (a), (b), (c) and (d) are the graphs of the parameters Bus, .k , Uniy k 5 Onig,k> Tnig k> ADd Vs, &k against

time ¢, for the U.S. Treasury bill yield respectively.

The next figures show the graphs of the parameters B, & » L, i » Oy ks Omiy k> a0d Yps, . for

the Eurocurrency Exchange rate respectively.
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Figures 17: (a), (b), (c) and (d) are the graphs of the parameters By, .k , Uniy k > Onig,k> Onig k> ADd Vs, &k against

time ¢, for the US Eurocurrency exchange rate respectively.

The overall descriptive statistics of data sets regarding U. S. Treasury Bill Yield Interest Rate and

U. S. Eurocurrency Exchange Rate are recorded in the following table.

Table 12: Descriptive Statistics for By, i, M. ks Oy ks Oy k> a0d Yy, 1 for Interest rate data set.

Y ‘ Std(Y) ‘ B ‘Std(ﬁ) ‘ i ‘ Std() ‘ ) ‘Std(é) ‘ G ‘ std(o) ‘ 5 ‘ Std(~y) ‘

‘ 0.05667 H 0.0268 ‘ 0.8739 ‘ 1.8129 | -3.8555 ‘ 8.7608 ‘ 1.4600 ‘ 0.00 ‘ 0.3753 ‘ 0.5197 ‘ 1.4877 ‘ 0.1357 ‘

Table 13: Descriptive Statistics for By, ks g k> Oring k> Org,k> and Yy, 1 for US Eurocurrency

Exchange Rate data.

Y ‘ Std(Y) ‘ B ‘ Std(3) ‘ i ‘ Std(u) ‘ 5 ‘ Std(d) ‘ F ‘ std(o) ‘ ol ‘ Std(v) ‘

‘ 1.6249 H 0.1337 ‘ 1.5120 ‘ 2.1259 | -1.1973 ‘ 1.6811 ‘ 1.4892 ‘ 0.00 ‘ 0.0243 ‘ 0.0180 ‘ 1.08476 ‘ 1.0050 ‘

Tables 12 and 13 show the descriptive statistics for B, k. [y, k> Oy, ks Oy, ks a0 Vi, 1 With time delay r = 5

for the U.S. Treasury Bill Yield interest rate data set and the U. S. Eurocurrency exchange rate data set, respectively.

In Table 14, we show the result for the real, simulated data using the local lagged adapted general-
ized method of moment (LLMM), and the simulated price (AGMM) using the aggregated parameter
estimates B s [, delta, @ and 7 in Table 12 and 13 for the U. S. Treasury Bill Yield interest rate and
U. S. Eurocurrency exchange rate respectively. The simulated price using the aggregated parameter

(AGMM) satisfies the discrete model

v = ui?y + Byt + alyi?,)°) + o (yi2,) AW, (7.10)
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Table 14: Estimates for Real, Simulated Price using LLGMM, Simulated Price using AGMM

method for U.S. Treasury Bill Yield Interest Rate and U.S. Eurocurrency Exchange Rate respec-

tively.
tr Interest Rate Data tr Eurocurrency Rate
Real  Simulated Simulated Real  Simulated Simulated
LLGMM  AGMM Real LLGMM  AGMM

0.0357  0.0357 0.0400
0.0364  0.0357 0.0390

5 1.6830  1.6830 1.6530
6

7 10.0384  0.0365 0.0390

8

9

1.7446 1.6830 1.8876
1.8592 1.7596 1.9952
1.8702 1.8735 1.8702
1.8837 1.8884 1.8837
10 | 0.0393  0.0406 0.0401 10 | 1.9609 1.9191 1.9609
11 | 0.0393  0.0389 0.0503 11 | 1.9375 1.9768 1.7307
12 1 0.0389  0.0393 0.0612 12 | 1.9140 1.8514 1.7245
13 1 0.0380  0.0386 0.0570 13 | 1.9682 1.9754 1.7191

0.0381 0.0378 0.0388

O 0 N O W

0.0393  0.0387 0.0399

14 | 0.0384  0.0391 0.0301 14 | 1.9236 1.9405 1.6657
15 | 0.0384  0.0390 0.0384 15 | 1.7328 1.8728 1.6403
16 | 0.0392  0.0385 0.0174 16 | 1.7241 1.8953 1.5961

17 | 0.0403  0.0392 0.0223 17 | 1.7074 1.7509 1.5929
18 | 0.0409  0.0385 0.0299 18 | 1.6258 1.6628 1.5638
19 | 0.0438  0.0399 0.0449 19 | 1.6732 1.6517 1.6017
20 | 0.0459  0.0444 0.0419 20 | 1.6732 1.7021 1.6785

390 | 0.0503  0.0503 0.0303 119 | 1.6011 1.6032 1.6029
391 | 0.0491 0.0517 0.0371 120 | 1.6371 1.5963 1.6102
392 | 0.0503  0.0503 0.0501 121 | 1.6145 1.6177 1.6058
393 | 0.0501 0.0505 0.0556 122 | 1.5865 1.5830 1.6061
394 | 0.0514  0.0492 0.0488 123 | 1.5985 1.6186 1.5350
395 | 0.0516  0.0510 0.0506 124 | 1.5528 1.5541 1.5936
396 | 0.0505  0.0484 0.0409 125 | 1.4948 1.5341 1.5197
397 | 0.0493  0.0503 0.0530 126 | 1.5138 1.5244 1.6091
398 | 0.0505  0.0494 0.0532 127 | 1.4922 1.4558 1.6737
399 | 0.0514  0.0496 0.0395 128 | 1.4644 1.4518 1.6588
400 | 0.0495  0.0512 0.0471 129 | 1.4675 1.4777 1.5698
402 | 0.0514  0.0496 0.0184 131 | 1.4416 1.4440 1.6404
403 | 0.0516  0.0513 0.0203 132 | 1.4960 1.4553 1.7092
404 | 0.0504  0.0483 0.0252 133 | 1.4787 1.4867 1.5950
405 | 0.0509  0.0491 0.0228 134 | 1.4550 1.4264 1.5864
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Next, we show the graphs of the simulated data set for the Treasury bill yield interest rate and US

Eurocurrency exchange rate data.
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Figure 18.: Real and Simulated price for Interest rate and U.S. Eurocurrency rate.

Figures 18(a) and (b) show the real and simulated price for U.S. Treasury bill yield interest rate and U.S. Eurocurrency
exchange rate respectively.

In the work of Chan et al [15], they compared the ex post volatility (defined by the absolute value
of the change in Treasury bill yield data set) with the simulated volatility ( defined by the square
root of the conditional variance implied by the estimates of the the solution of (6.42). It is calculated
as Oy, k (yfnk k) ﬁw). In order to compare our work with Figure 1 of Chan et al [15], we use our
approach/scheme to compute the Ex post volatility and simulated volatility for the U.S. Treasury

bill yield interest rate data set [128].
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Figure 19.: Ex Post Volatility and Simulated Volatility for Interest Rate.
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Figures 19 shows the Ex post volatility and simulated volatility for the U.S. Treasury bill yield interest rate data set

[128]. We compare our work with Figure 1 of Chan et al [15]. Their model does not clearly estimate the volatility. It

demostrated insensitivity in the sense that it was unable to capture most of the spikes in the interest rate ex post volatility

data set.

Finally, in Figure 20, we show the graphs of comparison of the real price, simulated price using

the LLGMM method and the simulated price AGMM method.
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Figure 20.: Real, Simulation using LLGMM, and Simulated Price using AGMM for U.S. Treasury

Bill Yield Interest Rate and U.S. Eurocurrency Exchange Rate.

Figures 20 (a) and (b) show the real, simulated price using LLGMM, and simulated price using the average parameters

B, fi, 8, @ and 7 in Table 12 and 13 for U.S. Treasury Bill Yield Interest Rate and U.S. Eurocurrency Exchange Rate

respectively.
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Chapter 8

Forecasting

8.1 Introduction

In this chapter, we shall sketch an outline about forecasting problem. An e— sub-optimal simulated
value y, . attime ¢ is used to define a forecast yj;k ;. for yy. at the time ¢, for each of the Energy

commodity model, and the U. S. Interest rate and U.S. Eurocurrency exchange rate.

8.2 Forecasting, Prediction and Confidence Interval for Energy Commodity Model

In the context of Illustration 6.4.1, we begin forecasting from time ¢;. Using the data set up to
time t;_1, we compute 17, 0'72%1_71», i, i and Ly, ; for i € 1(0,k — 1). We assume that we have no
information about the real data set {y; {i .- Under these considerations, imitating the computational
procedure outlined in Section 6.4 and using (6.40), we find the estimate of the forecast yfnk K at time

t;. as follows;

o
Yk = yz%k,hkfl+amk—17k71yz%k,1,kfl(Mmk—l,kfl_yfhk,l,kfl)At+0mk—1Jfflyfhk,l,kflAWk’
(8.1)
where the estimates 0725%_17,6_1, Ay, k—1 and g, | x—1 are defined in (6.40) with respect to the
known past data set up to the time ¢;_;. We note that yf%k ;. 18 the e-sub-optimal estimate for y, at
time £, .

To determine yfhkﬂ r1 We need 0725% &> Qring k and fi3, 1. Since we only have information of real
data up to time ¢;_1, we use the forecasted estimate yf%k ;. as the estimate of yy, at time ¢, and to esti-
mate o2 G, 1 and s, 1. Hence, we can write a3, 1 as G, = G

mg,k* Mk, Mp,R: ’ mp, M,

mk7yk—ﬁzk+1:ykfmk+2:-~~7yk71,y»,{lk,k )

s . Tofind yfhk+27k+2, we use the es-

‘We can also re-write (1, =pu.
Mmk7k MmkzykfﬁlkJrl7yk7’ﬁ1k+27"'7yk717y7;Lk7k

timates

Ay a .
Mgt 1,k+1 mk+17yk—rhk+27yk—mk+37---ayk—1:yfhk’k7y,{;1k+1,k+1,

P a1 = 'umk+l7yk—mk+27yk—mk+37---7yk—l7y7fﬁ,k7kvy7fﬁk+l’k+1.
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Continuing this process in this manner, we use the estimates

gy g kti—-1 = ,

IS f f f
mk+i—l7yk—'rhk+i7yk—'rhk+i+17~~~7yk’—laymk7kay,;Lk+17k+17~~-7ymk+17k+i_1

Mmk+iil7k+z_1 - Mmk+i717yk7'r”nk+i7yk7'r”nk+i+17~~~7yk717y,',f;Lk’k7y:,§Lk+17k+17~~'7yi,tnk+1,k+i,1

to estimate yj;ﬂ_ ki

Prediction/Confidence Interval for Energy Commodities

In order to be able to assess the future certainty, we also discuss about the prediction/confidence
interval. We define the 100(1 — «)% confidence interval for the forecast of the state yf; L attime ¢,
. 1/2 1/2 . .
1>k, as yj;” 21 a2 (sthhFJ yf;iiw.il, where (512?%71,1'71) yjfmil’ifl is the estimate

for the sample standard deviation for the forecasted state derived from the following iterative process

/ _ . f f f f
Yk = ymk,l,k:fl—i_amk—hk—lymk,l,k—l(lumk—lak—l_ymk,l,kfl)At+amk—17k—1yrhk,1,k71AWk‘

8.2)

It is clear that the 95 % confidence interval for the forecast at time ¢; is

1/2 1/2
2 2
(3/7{11 —1.96 (Smi—hi—l) ?/fm,l,i—l’ 3/7];” +1.96 <5mi_1,¢—1> ?J%H,i—l)

where the lower end denotes the lower bound of the state estimate and the upper end denotes the

upper bound of the state estimate.

Real, Simulated and Forecast for Natural Gas Real, Simulated and Forecast for Crude oil
1 T T T T 150 T T T T
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Real, Simulated and Forecast for Coal
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Figure 21.: Real, Simulated and Forecasted Prices for daily Henry Hub natural gas, daily crude oil,

daily coal, and weekly ethanol data set.

Figures 21: (a), (b), (c) and (d) show the graph of the forecast and 95 percent confidence limit for the daily Henry

Hub Natural gas data set [24], daily Crude Oil data set [23], daily Coal data set [22], and weekly Ethanol data set [136],

respectively. Figure 21: (a), (b), (c) and (d) show two region: the simulation region S and the forecast region F. For

the simulation region S, we plot the real data set together with the simulated data set as described in Figure 11. For

the forecast region ', we plot the estimate of the forecast as explained in Section 8. The upper and the lower simulated

sketches in Figure 21 (a), (b), (¢) and (d) are corresponding to the upper and lower ends of the 95% confidence interval.

For details, see Figure 22.

Next, we show a graph of the upper, least upper bound, lower and greatest lower bounds for the

estimates of the forecast for the energy commodity processes after running the simulations for 25

times.
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Figure 22.: Bounds for daily Henry Hub natural gas, daily crude oil, daily coal, and weekly ethanol

data set.

Figures 22: (a), (b), (c) and (d) show the bounds for the daily Henry Hub Natural gas data set [24], daily Crude Oil

data set [23], daily Coal data set [22], and weekly Ethanol data set [136], respectively. These bounds are derived after 25

run time (simulations)

8.3 Forecasting and Prediction/Confidence Interval for U. S. Treasury Bill and U. S. Eu-

rocurrency rate

Following the same procedure explained in Section 8.2, we show the graph of the real, simulated,

forecast and 95 percent confidence limit for the Interest rate and US dollar Eurocurrency rate.
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Figure 23.: Real, Simulated, Forecast and 95% Confidence Limit for Interest rate and US Eurocur-
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Figure 23(a) shows the real, simulated, forecast and 95 percent confidence limit for the Interest rate data sets and
Figure 23(b) shows the real, simulated, forecast and 95 percent confidence limit for the US Eurocurrency data.

Lastly, we show some bounds for the U. S. Treasury Bill Interest Rate and U. S. Eurocurrency

rate.
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Chapter 9

A Two-scale Network Dynamic Model for Energy Commodity Process

9.1 Introduction

Understanding the economy evolution in response to structural changes in energy commodity net-
work system is important to professional economists. The relationship between the different energy
sources and their uses provide insights into many important energy issues. The qualitative and
quantitative behavior of energy commodities in which the trend in price of one commodity coin-
cides with the trend in prices of other commodities, have always raised the question of whether
there is any relationship between prices of energy commodities. If there is any relationship, then
what comes to mind is the extent to which one commodity influences the other. Petroleum, natu-
ral gas, coal, nuclear fuel, and renewable energy are termed as primary energy components of the
energy goods network system because other sources of energy depend on them. Natural gas is usu-
ally found near petroleum. This is because of the fact that natural gas and crude oil are rivals in
production and substitutes in consumption. As a result of this, energy theory suggests that the two
prices should be related. The electric power sector uses primary energy such as coal to generate
electricity, which makes electricity a secondary rather than a primary energy source. According to
the US Energy Information Administration ( EIA ), the major energy goods consumed in the United
States are petroleum (oil), natural gas, coal, nuclear, and renewable energy. The majority of users
are residential and commercial buildings, industry, transportation, and electric power generators.
The pattern of fuel usage varies widely by sector [130]. For example, 71% of total petroleum oil
provides 93% of the energy used for transportation; 23% of total petroleum oil provides 17% of
energy used for residential and commercial use; 5% of total petroleum oil provides 40% of energy
used for industrial use; but only 1% of total petroleum oil provides about 1% of the energy used to
generate electric power, whereas coal provides 46% of the energy used to generate electric power
and natural gas provides 20% of the energy used to generate electric power. This analysis suggests
that the strength of interactions between coal and electricity will be stronger than when compared

with the strength of interactions between crude oil and electricity, or natural gas and electricity.
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Energy price forecasts are highly uncertain. We might expect the price of the natural gas and
crude oil to follow the same trend because they are often found mixed with oil in oil wells, and also
of the fact that natural gas is often used in petroleum refining and exploration. Recently, Ramberg et
al [94] showed that the cointegration relationship between natural gas and crude oil does not appear
to be stable through time. They claimed that though there is cointegration between the two energy
prices, but there are also recurrent exogeneous factors such as seasonality, episodic heat waves, cold
waves and supply interruption from hurricane affecting the trends in the prices. Brown and Yticel
[12] also observed that the price of natural gas pulled away from oil prices in 2000, 2002, 2003 and
late 2005. Oil prices are influenced by several factors, including some that have mainly short-term
impacts and other factors, such as expectations about future world demand for petroleum, other
liquids and production decisions of the Organization of the Petroleum Exporting Countries (OPEC)
[130]. Supply and demand in the World oil market are balanced through responses to price move-
ment with considerable complexity in the evolution of underlying supply and demand expectation
process. For the petroleum and other liquids, the key determinants of long-term supply and prices
can be summarized in four broad categories [130]: the economics of non-OPEC supply, OPEC in-
vestment and production decisions, the economics of other liquids supply, and World demand for
petroleum and other liquids. According to the US Energy Information Administration ( EIA ) [130]
and following the decline of natural gas prices since 2008, real average delivered price for electric-
ity has dropped gradually to 9.8 cents per kilowatthour (kWh) from 2009 to 2012. Retail electricity
price is influenced by the fuel price, and particularly by the natural gas price [130]. However, the
relationship between retail electricity price and natural gas price is complex. Many factors influence
the degree to which and the time frame over which they are linked. A few notable factors are a share
of natural gas generation in a region, the level of costs associated with the electricity transmission
and distribution systems, the mix of competitive versus cost-of-service pricing, and the number of
customers who purchase power directly from wholesale power markets. As a result of this, it can
take time for changes in fuel price to affect electricity price. The question that we are now faced is
whether the price of electricity depends on the prices of more than one energy commodities, rather
than depending on only one commodity (coal or natural gas).

An understanding of how changes in price of one energy commodity are expressed in terms of
other energy commodity is needed. This would prove to be useful in predicting price behavior over
the long run, and further facilitates profit maximizing process. To check if there is really indeed

a relationship between energy commodities; the need to be able to create a model which explains
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such commodity prices relationship over short and long time interval arises. The relationships
between energy commodities have been addressed in [4, 12, 39, 40, 49, 93, 94, 131, 132]. The error
correction model [4, 12, 39, 49, 93, 94] is the most commonly used model by authors to describe
the relationship between energy commodities. Moreover, Hartley et al [49] have concluded that
the U. S. natural gas and crude oil remain linked in their long-term movements. In addition, it is
exhibited that there is strong evidence of stable relationship between these two energy commodities
which are affected by short run seasonal fluctuations and other factors. The rule of thumb [49] has
long been used in the energy industry to relate the natural gas prices to crude oil prices. The rule
denoted by the 10-to-1 rule states that the price of natural gas is one tenth of the price of crude oil
prices. Similarly, 6-to-1 rule states that the price of natural gas is one sixth of the price of crude
oil. It has been examined by Brown et al. [12] that these two rules do not perform well when used
to assess the relationship between U.S natural gas price and West Texas Intermediate (WTI) crude
oil price for the past 20" years. Moreover, their error correcting model specify the relationship
between the two commodities. Using this model, they show that when certain factors are taken
into account, movements in crude oil prices can shape the price of natural gas. Vezzoli [131] in his
work applies an ordinary least squares (OLS) regression on log of natural gas and crude oil prices.
Using this model, he was able to conclude that there is a relationship between natural gas and crude
oil prices. Bachmeir et al. [4] showed that the crude oil, coal and natural gas in the United States
have weak cross-cointegration using the error correction model. Ramberg et al [94] shows that any
simple formula between natural gas and crude oil prices will leave a portion of the natural gas price
unexplained. Furthermore, the relationship between natural gas and crude oil using a vector error
correction model [12, 94] under the cointegration between the two energy commodities and other
factors such as recurrent exogeneous factors are presented. Villar et al. [132] lists some economic
factors linking natural gas and crude oil prices, while testing for market integration in the United
Kingdom during the time when natural gas was deregulated. Asche et al. [40] have integrated the
prices of the energy commodities: natural gas, electricity, and crude oil.

The most of the work is centered around the relationship between prices of energy commodities.
In this work, we are interested in an inter-dependence of certain energy commodities. Moreover, we
develop a hybrid system of multivariate continuous stochastic network dynamic system.

In this chapter, we further extend the non-linear interconnected stochastic model (4.11) to multi-
variate interconnected energy commodities and sources with and without external random interven-

tion processes.
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9.2 Model Derivation

We denote p = [p1, p2, ..., pn]” to be a vector of n energy commodity prices which are considered
to have long-run or short-run relationship with each other. Let p;(t) be the price of the j-th energy
commodity at time ¢. The economic principles of demand and supply processes suggest that the
price of a energy commodity will remain within a given finite expected lower and upper bounds.
Therefore, u; € Ry = (0,00) and I; > 0 stand for the expected upper and lower limits of the
j-th energy commodity spot prices, respectively. In the absence of interactions between the energy
commodities p;, j € I(1,n), where I(a,b) = {z € Z | a < z < b}, the market potential for the jth
commodity per unit of time at time ¢ can be characterized by (u; — p;) (; 4+ p;). This simple idea
leads to the following economic principle regarding the dynamic of the price p; of the jth energy
commodity. The change in spot price of the j-th energy commodity Ap;(t) = p;(t + At) — p;(t)

over the interval of length |At| is directly proportional to the market potential price.

Apj(t) o< (u; — pj) (I; + pj) At. ©.1)

This implies that
dp; = a; (u; — p;) (I; + p;) dt, 9.2)

for some constant cj. From this deterministic mathematical model, if o; > 0, we note that as the
price falls below the expected price u;, the price of the jth commodity rises, and as the price lies

above u;, there is a tendency for the price to fall. Similar argument follows if o; < 0. Hence

lim p;(t) = uj, 9.3)

t—o00

which implies that u; is the equilibrium state of (9.2).

In a real World situation, the expected upper price limit u; of the j-th commodity is not a constant
parameter. It varies with time, and moreover it is subject to random environmental perturbations.
Therefore, we consider

uj = yj + &, (9.4)

where §; is a white noise process that characterizes the measure of random fluctuation of the upper
price limit of the j-th commodity; here y; stands for the mean of the energy spot price process of
the j-th commodity at time ¢. It is further assumed that y; is governed by a similar dynamic forces

described in (9.2), that is,

dy; = pj (uj —y;) (vj + y;) dt, 9.5)
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where f1; > 0 is defined as the mean reversion rate of the mean of the j-th commodity, v; > 0 is
defined as the lower limit of the mean of the j-th commodity. By following the argument used in
(9.4), we incorporate the effects of random environmental perturbations into the lower limit v; of
the mean of the j-th commodity:

v = v + ey, (9.6)

where v; > 0, and e; is a white noise process describing the measure of random influence on the
mean price of the j-th commodity.

Substituting expressions in (9.4) and (9.6) into (9.2) and (9.5), respectively, we obtain

dy; =y (uj —y;) (vj +y5) db + p (u; — y5) €5 (t)dt
dp; = o (y; —pj) (lj +p;)dt + a; (I; + py) §(t)dt.

In the absence of interactions and using (9.7), the system of stochastic model for isolated ex-

9.7

pected spot and spot prices processes are described by the following non-linear system of stochastic

differential equations:

dy; = pj(uj —y;) (vj+y;)dt + 655 (wj —y;5) dW;;(t), vj(to) = yjo,

dp; = «aj(y; —pj) (G +p;)dt + o5 (L +pj) dZ; (), pj(to) = pjo, j € I(1,n),
(9.8)

where

piej(t)dt = 6;,;dW; ;(t), j=1,2,...n,
a;&(t)dt = 0j;dZ; ;(t), j=1,2,...n,
and d; ;, 0; ; are non-negative for j = 1,2,...,n.

In the presence of interactions, for each j € I(1, n), we consider both deterministic and stochastic
interaction functions. For each j € I(1,n), we define the j-th aggregate interaction functions
g; : [to,00) x R — Rand h; : [tg,00) x R™ — R for the jth commodity of the mean energy spot
price process y; (t) and the energy spot price process p; (t) in a energy commodity market network

system, respectively. Moreover, we assume that these functions have the following structural forms;

g] (t7 y) = g] (t7 kj,lyla kj,2y27 teey kj,nyn) (99)
hj(t,p) = hj(t,v,1P1,75,2D2; - VimPn),

where k;; and -, ; are elements of the n x n interconnection matrices E, and Ej,, respectively. In

(9.9), kj; and v;; : Ry — [0, 1] represent a degree of interaction of the j-th commodity with i-th

commodity in the energy commodity market network system.
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For the matrix Eg, k;; = 0 with fixed i € I(1,n) if the i-th commodity in the energy market
network system does not influence the j-th commodity. Likewise, for the matrix Ej,, ~;; = 0 with
fixed i € I(1,n), the j-th commodity in the energy market network system sub-component of p is
totally unaffected by the influence of the i-th commodity.

Finally, we introduce interactions in the diffusion coefficients with respect to the j-th commodity
of the energy market network system under random environmental perturbations as: 1 : [to, 00) X

R™ — R™and A; : [tg,00) x R™ — R™ for each j € I(1,n). The diffusion part is of the form

p(ty) e (Odt = 5wt ) dW(t)
=1 (9.10)
AJR) &0t = 52 Aji(t,p)dZ(r),

where e; and §; are n-dimensional white noise processes; - stands for dot product.

We assume that the interaction functions (9.9) and (9.10) have the following forms;

glt.y) = ~(tyG(ty)
h(t,p) = A, p)H(¢,p),
Y(ty) = v(ty)¥(Ey),
A(t,p) = AL, p)®(t p),

where g(t,y) = [g,(t,¥), - & (£, ¥), -, 8, (£, V)T, h(t,p) = [h(t,p), ..., h; (¢, p), ..., hy (¢, p)]”
are defined in (9.9), ¥ (t,y) = (¥,,(t, y))an, and A(t,p) = (Aji(t,P)),, - Y(t,y) = diag(ui —
YLy ooy Uj — Yj, ooy Up — Yp) and X(¢,p) = diag(lh + p1,....1; + pj, ..., ln + pn); G, and H are
n x 1 column vectors; ¥ = diag(y, ..., P, ..., ¥,,) and ® = diag(A, ..., Aj, ..., Ay,) are block
diagonal matrices; ¥; = [ 1, ..., 1, V) 0ls Aj = [Aj1, s Aju, oo, Ajn]. We also assume
that G, H, ¥ and @ satisfy the local Lipschitz condition. This assumption implies that g, h, @ and
A also satisfy local Lipschitz condition.

Thus, the interconnected energy commodity network system is described by

dy; = (uj —y;) [(Mj (vj +y;) +Gj(t,y)) dt + 8;;dW; ;(t) + f:l‘l’j,z(t,Y)de,z(t)} ,

yj(to) = yjo.
dp; = (lj +pj) [(%‘ (y; —pj) + Hj(t,p)) dt + 0, ;dZ; ;(t) + lzl @t p)de,z(t)] ,

p;(to) = pjo, j € I(1,n),
©.11)

116



where the parameters ji; > 0; a; > 0; u; > 0;v5 > 0;1; > 0; 655 > 0; 0;; > 0; and for j # 1,
d;1 > 05051 >0;57,1l € I(1,n); for j € I(1,n), W; and Z; are n-dimensional independent Wiener
processes defined on a filtered probability space (£2, F, (F¢)¢>0, P); for [ # i, E[de,ldWm] =0,
and for | = 4, E[dW;;dW},;] = dt; the filtration function (F;);>¢ is right-continuous; for each
t > 0, each F; contains all P-null sets in F; the n-dimensional random vectors y (o) and p(¢o) are

Fi, measurable.

The network system of stochastic differential equations in (9.11) can be written as follows;

dy = a(t,y)dt + Y (t,y)dW(t), y(to) = Yo

9.12)
dp =b(t,y,p)dt + o (t,p)dZ(t), p(to) = P,
where
( (w1 —y1) (1 (v1 +91) + Ga(t,y)]
(ug — y2) [p2 (v2 + y2) + Ga(t,y)]
a(tay) = : )
(un — Yn) [Hn (Vn + Yn) + Gi(t,Y)]
(I +p1) [a1 (y1 — p1) + Hi(t, p)]
b(t.y.p) — (I2 + p2) [o2 (v2 :—p2) + H(t, p)] |
(In + pn) [on (Yn — pn) + Hi(t, p)]
T(t7Y) = diag(Al(Y)’""Aj(y)v")An(Y))v U(tap) :dlag(Bl(p)a7Bj(p)van(p))’
and
Aj(y) = (uj—yj) (‘I’j,1 Wio oo Wi 055+ ¥ P ... ‘I’j,n> ;
Bi(p) = (I +pj) (‘I)j,l Do ... P 0j;+P; P ... (I)j,n) ;

W= (W, .W,,. ., Wy, and Z = [Zy,...Z}, ..., Zy)T are block matrices;
Wi = Wi, . Wja,. . Winlt, Z; = [Zj1, . Zj2, s Zin]'s and X (t,y), o(t,p) are a n x n
block matrix with each entries having order 1 x n.

In the next section, we outline the model validation problems of (9.12), namely, the existence and

uniqueness of solution process.
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9.3 Mathematical Model Validation

In this section, we validate the mathematical model derived in Section 2. We note that the classical
existence and uniqueness theorem [57, 66] is not directly applicable to (9.12). We need to modify
the existence and uniqueness results. The modification is based on Theorem 3.4 [57]. We show the
global existence of solution process of system of differential equations (9.12).

We note that the rate functions a, b, Y, and o in stochastic system of differential equations (9.12)
do not satisfy the classical existence and uniqueness conditions [57]. However these rate functions
do satisfy the local Lipschitz condition. Therefore, we construct sequences of functions for the drift
and diffusion coefficients of interconnected dynamic system (9.12) so that the classical conditions
for existence and uniqueness theorem are applicable. The construction of modification scheme is
as follows: First, we define a cylindrical subset [tg,00) X Uy, of [0,00) x R™ for ¢y € [0,00),

m € I(1,00), where U, is an n- dimensional sphere with radius m defined by
Un = B(X07m) = {X eER" : ||X - X0|| < m}a

forany m € I(1, c0). We note that Uy, is inscribed in n-dimensional parallelepiped R(x —xo, m) =
[-m,m] X ... X [-m,m] in R™.

The developed stochastic network model (9.12) can be written as:

9.13)
dp =b™(t,y,p)dt + o™ (t,p)dZ(t), p(to) = Po,
where )
a™(t,y) = a(t,q(y,m))
Y™(ty) = Y(t,q(y,m)), ©.14)
b™(t,y,p) = b(t q(y,m),q(p,m)),
o™ (t,p) = o(t.q(p,m)).

Here, for each j € I(1,n) and x € R, we define q;(x,m) = max {—m, min{x; — xoj, m}}.

Hence, q(x, m) = [q; (x,m), ...,q;(X,m), ..., q,(x,m)]", and it is denoted by x(M),

REMARK 23 We observe that q(x,m) satisfies global Lipschitz condition on R™ with a Lipschitz
constant 1. This together with the local Lipschitz condition assumption on the drift and diffusion co-

efficients of network system of stochastic differential equations (9.12), the modified rate coefficient
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functions in (9.13) satisfy the classical existence and uniqueness conditions [57, 66]. Thus, its so-
lution is denoted by (y,,,, p,,,), for m € I(1, 00). Moreover, it is assumed that (y, p) is non-negative

whenever y(, p, € R}.

Now we apply Theorems 3.4 and 3.5 of [57] in the context of modified system of stochastic dif-
ferential equations (9.13) and Remark 23 to establish the global existence of solution of stochastic
differential equations in (9.13). For this purpose, we outline the argument used in the proof of these
theorems.

In addition to the local Lipschitz conditions on the drift and diffusion coefficients, we further

impose the following hypothesis on the coefficients:

(Hy)
lg;(ty) < ar;+ syl
hi(t, < da - +ilpl.
|h;(t,p)| 1 ’Z/JHPH ©.15)
[Py < az;+ 65yl
| [Au(tp)| < ay;+65lpll-

where for i € I(1,2), ajj, a;j are non-negative; x;, 7, SN, oj; € Ry. From (9.13), we further
remark that dynamic of mean of spot price vector y is decoupled with the dynamic of spot price p.
Now we first apply Theorems 3.4 and 3.5 of [57] in the context of modified system of stochastic
differential equations (9.13) and hypothesis (Hj ) to establish the global existence of solution of the

completely decoupled sub-system of stochastic differential equations in (9.13). For this purpose,

we outline the argument used in the proof of these theorems.

DEFINITION 9.3.1 Let T, be the first exit time of the solution process y,, from the set B(y,, m).

Define T to be the (finite or infinite) limit of the monotone increasing sequence T, as m — oQ.

= lim 7.,
m—00

We wish to show that

P(r=00) =1. (9.16)

In the following, we present a result that is parallel to Theorem 3.5 [57] in the context of the
completely decoupled sub-system of stochastic differential equation (9.12). For this purpose, it is

enough to exhibit the global existence result for the transformed system (9.13).
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LEMMA 9.1 For m € I(1,00), and y, € R, lety, (t) = y,,(t,t0,¥) be the solution of the
completely decoupled sub-system of (9.13), and let the hypothesis (Hy) be satisfied. Let V| be a

function defined on [to, 00) x R} into Ry, it is defined by;

Vi(t,y) = In([y|* +e), (9.17)
Then there exists some constant ¢1 > 0 such that
LV; <1V
(9.18)

Vi = inf Vi(t,y) = oo as m — oo,
[lyl[>m

where L is the differential operator with respect to (9.12); e = exp(1).

Moreover, the global existence of solution of the completely decoupled sub-system of (9.12) fol-

lows.
Proof.
. . n 8V1(t,y) _ 2y IPVi(ty) _
It is obvious that V; € Cy2 on [tg,00) x R! — R. In fact, ;. (MPFer oy

492 52 dy;y; . . .
(HY|\22+6) — (||y||gjre)2, dg/;i(;;y) =— (Hyﬁ/fﬁe)g exist and are continuous functions defined on [tg, 00) X
— R. Moreover, the L-operator with respect to the completely decoupled component is as
R? R. M he L-op ith resp h pletely d pled p i
follows:
= 8V1 (t7 y)
LVi(t,y) = [ (wj = y5) (v + ;) + g;(t,¥)] oy
=1 !
1< 82v1<t7y)
+5 05,5 (uj —yj) + v (t,y)] +Z%z 02
j=1 1] Yi
I em | ?Vi(t,y
+5 Z Z P (6, ¥); (8 y) + 2055 (us — i) + ;51054 5y(y)
iYj

=1

J
J#
n
= > (— [yj -
j=1
1 n
+2Z 54
n

+;ZZ¢

J=11#5

=1 |i#i
E)

(WQUv}{%C”;%>3<mW#m>+:1

2y,

-~ 2g;(t,y)y;
2 (Ilyl1* +e)

2 Ay
+¢“]<umw+e> UMP+6P>

2 4y?
(IIyl]? +e)

umw+@J
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1 dyiy;
“a 2621 U; 7 0 ITENT EEREY)
ZZZ #wamyl 3a(t:3) + 2ils =)+ Bl e

u+v\° oy 28 (Y)Y [05(u — yy) + 9yt y)]
( > R ro t 2 WEre T2 (bFTd

Jj=1

IN

2
2. TP +e

i

dyiy;
_*ZZ Z"letyl 1,bjlty)+2[”(l yl)+¢zz]w]z m

i=1 j=1 |l#i,j
J#i

i+
(ar; + w5llyID* + 3

2i“ﬂ‘<%;w>2+i (I +e)

j=1

+2 Z [ u] + 1 ((127]‘ + 5]}]‘)2} + Z Z(QQJ + ng)Q

j=1 1)

+2 Z Z Z (az,i + Su) (az,j + Sﬂ)
i=1 j#i l#4,j

—|—4Z Z(CLQJ‘ + Sjﬂ') [(51'71'(%‘ +1) + (ag; + SM)]
i=1 jAi

Cl‘/l(tv Y)a

n ) N\ 2 n n -
where ¢; = 1+ 2 Z 14 (@) + Z (a1 +wj)* +2 3 [532,3'(% +1)% + (az,; + 5j,j)2] +
=1 j=1

IN

IN

ii(az,j+5ﬂ> $230 503 (an o+ Gi) (02 +551)

=11 1=1 j#i l#1,j
n o n

430 3 (a2 +j4) [%‘(uz‘ +1) + (az; + Sm')}
i=1 j#i

Furthermore, ! 1‘1|1f Vi(t,y) — oo as m — oc.

To show that P(T = oco) = 1, we define a function

.
<.

V(t,y) = Vi(t,y) exp{—ci(t — to)}. (9.19)

It is obvious that LV < 0. By defining 7,,(t) = min(7,,,t); Y(t) = y,,(t) for t < 7,,,; and

imitating the argument of Lemma 3.2 [57], we have

E{Vi(7in(1), V(7 (1)) < 1RV (1o, ¥ (to))-

Hence

S AUINIY) — 0 as m — oo by (9.18). (9.20)

inf  Vi(u,y)
[lyl[>m,u>to

P{r, <t} <
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The global existence and uniqueness of solution of the first component of (9.13) follows by letting
m — oo. Hence, from this and the fact that the solution process of transformed system (9.13)
is almost surely identical with the solution process of the original system (9.12), we conclude the
global existence and uniqueness of (9.12).

O

Now by following the idea of Lemma 9.1, we present a global existence and uniqueness of so-
lution of the system of stochastic differential equations governing the sub-system p in (9.12). We

simply state a Lemma without the full proof.

LEMMA 9.2 For m € I(1,00), and y,, py € R, letp,, (t) = p,,(t,to,pg) be the solution of the
system of stochastic differential equations governing the sub-system p described in (9.13), and let
the hypothesis (H) be satisfied. Let Va be a nonnegative function on [tg, 00) x R} into Ry defined

by;
n ] T
Vi) = lpIP + o)+ 3 | )+ ©21)

Then there exist a constant ¢ > 0 such that

LV < cVs
9.22)
Vom = W’ilr\lf Va(t,p) — 0o as m — oo.
>m

where L is the differential operator with respect to (9.12); e = exp(1).
Moreover, the global existence of solution of the system of stochastic differential equations gov-

erning the sub-system p described in (9.12) follows.

n
Proof. Itis obvious that V5 € Cy 2 on [tg, 00) xR} — R . In fact, 2 t 9va(tp) _ Z S (y;(t) + 1;)%

Va(tp) _ 2,  9PVa(tp) _ 2 47 9Va(tp) _
Op; (plP+e)> ~ op2 [lplZ+e) ~ UpIP+e)2* ~ dpip;

uous functions defined on [ty, 00) x R} — R. Moreover, the L-operator with respect to the system

4p; .
_W exist and are contin-

of stochastic differential equations governing the sub-system p described in (9.12) is as follows:
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LN n 2p;
j=1 le P
1 2
5 2 | 03505+ 2) + Ay (1) +ZAJ, L0 e T o)
j=1 I#j P
4pj2-
(Ipl[* +e)?
4pip;
4= ZZ ZAzlAjl+2oll(l +pi) + AialAj TPl +e)?
=1 j=1 =

J#i
_ _i%(y.+l,)2+zn:a< <_ [p,_yj—lj]2+<yj+lj>2> 2p;
- J J J J 2
= 2 = 2 2 (Ilplf* +e)

— (Ipll* +e)
1 & 2 4p?
+= ) [0l +p;) + Ayt p))? - I
2; PN n (Ilpl*+e)  (Ilpl[* +e)?
2 4p3
+= Al 7p - 4
;; ” < Pl +e)  (I[pll* +e)?
4pip;
—= AN+ 2000l +pi) + A A | s
ZZ E_j i 2l ] CETE
J?él
n n ! 2 2
j p; [ay ; +;1IpI]* + pj
< =D i) (4 1) e+ J !
jz::l 2 Z ’ (I[p[f* +e) ; (I[pl[* +e)
i [0, (l; +pj) + Aj,j( )
2
st (IIpl1* +e)
n n n n n
+y D (a+50*+2) > (“2@' +5i:l) (“2,3‘ +5jvl)
i=1 ] =1 j#i I
n n
+4Z Z(GQJ + 5']'72') |:0'i,i(li + 1) + ((12’1- + &i,i)}
i=1 j#i
S CV2(t7p)7
n , n , n n ,
where ¢ = 1+ 3 [a; ; + ;] +2 Z [sz',j(lj +1)% + (ag; + 5j,j)2} + 30 Y(ag; +650)° +
=1 ‘ i=1i7]

n n n ’ ~
232 3 (dby+ i) (aby + aﬂ) FAY Sy +550) [oiall + 1) + (a4 630)].
1=1 j#i l#i,j =1 j#i
Furthermore, ! 1‘r‘1f Va,m(t, p) — 00 as m — oo. O
p||>m
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Following the final argument used in proving the global existence of y in Lemma 9.1, we conclude
that there exists a unique global solution to the interconnected system of stochastic differential
(9.12).

In the next section, we discuss about the case where we incorporate jump process into the system

y,p)

9.4 Energy Commodity Model With and Without Jumps

Due to random interventions that affects the price of energy commodities, we introduce random
interventions described by a continuous jump in our model. We follow the approach discussed in
[120, 138]. In their work, Wu [120, 138] investigated a class of stochastic hybrid dynamic processes.

Let K > 0 be the number of jumps on the interval [ty, T'], for T > 0. For K # 0, let T, ..., Tk
be the jump times over a time interval [tg, 7] such that tg = Ty < 11 < ... < Txg < T, where
T; denotes the time at which the i-th jump occurred in the system (y, p). For K = 0, no jump has
occurred on the interval [to,T]. We denote the i-th sub-interval by T;_1 < ¢ < T;. Knowing the
global existence and uniqueness solution process of system (9.12) on the interval [ty, 7], T" > 0
in Section 9.3, for ¢ € I(1, K*) and K # 0, we consider the solution process on each subinterval
[T;—1,T;), between jumps, where K* = K if Ty = T, and K* = K + 1if Tx < T. For
i€ I(1,K*) and K = 0, we have I(1,K) = () or I(1, K*) = {1}. In this case, we consider
the solution process on [tg, T']. The interconnected system is governed by the following system of

continuous time stochastic process;

dy™' = a"l(t,y)dt + Yt y)dW(t), y(T,_1) =y, te[l_1,T;)
dp'~t = by, p)dt + o't p)dL(t), p(Ti-1) =p", te [, 1), i€ I(1,KY)
y o = Iy (I, Ty,
pi = O (T, T,y L pi ),
(9.23)
where

I = diag(ﬁ,ﬂé,.. Wi),

ey My

©' = diag(0},05,....,0,),

(yi_1 (t, T_1,y 1), p (¢, Ti_1, ¥ 1, pi_l)) is the solution of system of equation (9.12); for K #

Oandi € I(1, K*), IT and ©" are jump coefficient matrices. These jump coefficients are estimated
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Ai _y;(T3) - _ pi(1%)
J lim !~ (4T 1y 1) T lim p~ ! (6,7 1,yi =1 pi=t)
=T, =T,

approach in [120, 138], the solution of (9.23) takes the following representation:

by

for j € I(1,n). Following the

yY (t,t0,¥0) , y(to) = Yo to <t <Ty
yl (t7T17y1)7 yl :y(Tl)a Tl §t<T27

Y(tvt()uy()) = i1 i1 1
yl_ (t7ﬂ—17yz_ ) ) yz_ = y(ﬂ—l)y E—l S t < ﬂ;

yK (t7TKayK)7 yK:y(TK)7 Tk <t<T,
pO (ta tO7Y07pO) 1) P(t()) - pOa tO S t < Tl
pl (t7T17y17p1)7 p1 :p<T1>7 Tl St<T2

p(t,t0, Yo, Pg) = , . . .
p (6 T,y pY), prt=p(Ti1), Tioi <t < T,

k pK(taTKayKvpK)v pK:p(TK)a Tk <t<T,
(9.24)
and [(1,0)={i€Z : 1<i<0}=0and I(1,K*) = {1}.
REMARK 24 For no jump, thatis K = 0, (9.23) and (9.24) reduce to
dy = a(t,y)dt + Y (t,y)dW(t), y(to) = yo ©925)
dp =b(t,y,p)dt + o (t,p)dZ(t), p(to) = py, to <t <T;
and
t, 0, ) to) = )
y(t:t0,¥o) ¥(to) = Yo (9.26)
p(tat07y07p0)a p(tO) = Po to <t< Ta
respectively.

9.5 Multivariate Discrete Time Dynamic Model for Local Sample Mean and Covariance Pro-

cess

In this section, we use the idea of moving average to derive an algorithm for the mean and covari-
ance of sample sequences with respect to a continuous time stochastic process. The development
of idea and model of statistic for mean and covariance processes is motivated by the state and pa-

rameter estimation problems of continuous time nonlinear stochastic dynamic model of the energy
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commodity market network (4.11) . For this purpose, we need to introduce a few definitions and
notations.

For each i € I(1, K*), let 7,_1 and 7;_1, be finite constant time delays such that 0 < ;1 <
Ti—1. If K = 0, then there is no jump. Hence, we simply write 7,1 = 7 and v;_; = <. Here
T;—1 characterize the influence of the past performance history of state of dynamic process. v;_1
describe the reaction or response time delays. In general, these time delays are unknown and random
variables. These types of delays play an important role in developing mathematical models of
continuous time [64] and discrete time [59, 88] dynamic processes. Based upon the practical nature
of data collection process, it is essential to either transform these time delays into positive integers
or design a suitable data collection schedule or discretization process. For this purpose, for each

i € I(1, K*), we describe the discrete version of time delays of 7; and ; as follows:

Ti—1

At

(rer = |

Moreover, for the sake of simplicity, we assume that 0 < v,_1 < 1, (n,—1 = 1).

} +1, and 7,1 = HX@:I } +1, for i € I(1, K*). (9.27)

DEFINITION 9.5.1 Letx = [z, %2, ..., mn]T be a continuous time multivariate stochastic process
defined on an interval [to—T,T] into R"™, for some T' > 0. Fort € [to—T,T), let F; be an increasing
sub-sigma algebra of a complete probability space (0, F,P) for which x(t) is F; measurable. For
each i € I1(1, K*), let P and P*~1 be a partition of [to — 7, T) and [T;—1 — 7;_1,T;), respectively.
The partition P~ is derived by decomposing the partition P. For eachi € 1(1, K*), the partitions
P and P~ are defined as follows:

P = {t : txy =to+ kAt, ke I(—r,N)},

| ' | (9.28)
Pt o= {7 st =T + kAL ke I(—riy, N

_ T,—T;_
where At = TNtO = 1]\,27_’11 and Ty = 1.

REMARK 25 We define S; = ZZ: N;_1 with §g = 0. For K # 0, we note that we can write [P as
{to < t1 < ... <tn, < tN0+l1:0< e < NN, < INpN 41 < e < tsp, < ts 41 < ol <
ts, < ... < T}. From this, it follows directly that the jump times 7; are contained in P. For any
t}:l eP-l ke [0, N;_1], we have t};‘l € P. Hence, there is a relationship between elements of
Pi—! with P that is described by t};l =ts, ,+k for k € 1(0, N;). In fact, the relationship between

set of jump times {77, 75, ..., Tx } and the partition P’ defined in (9.28) is as: T; — ts,, where the
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N;_1’s are the size of partition Pi—1 of the sub-interval [Tj_l, Tj] It follows that S~ = N. Using

these facts, and noting that if X' = 0, then P1'=P, N,y =N,7_1 =1, Yiel =Y, Ti—1 =T,
Ni—1 =1, t?g_l = t;.. Moreover, (9.28) can be written as:

=t T =T+ kAL k€ I(—rim1, Nis1) b (9.29)

Foreachi € I(1, K*),let {x'~1(t; 1) }]]‘5\[;117”1'71 be a finite sequence corresponding to the stochas-

tic process x and partition P*~! defined in (9.29). We simply write x(t} H=x-1 (ti~"). We further

recall that X(tz_l) is F,i—1 measurable for k € I(—r;_1, N;_1). We also recall the definition of for-

k

ward time shift operator F' [11] :
Fix (t7") =x(t23), 1€ 1(0,00). (9.30)

DEFINITION 9.5.2 Forq;—1 = landr;_y > 1, each k € I (0, N;_1), and each mz_l eI(2,ri1+

Si—1 + k — 1), a partition P,~* of closed interval [t [ e 1ty 1] is called local at time ti ", and
my
it is defined by
I i1 <t ity < <t (9.31)

Moreover, P,i_l is referred as the mﬁc_ —point sub-partition of the partition P'~' in (9.29) of the

closed sub-interval [tz__ini—ljz_—ll] of [-Ti—1, T3).
k

REMARK 26 We note that for i = 0, that is, there is no jump, we have P,ifl P.,m 1 L= = mg,

tz IW L= ti; lmk and tﬁc 1 = tr—1, where P} is referred as the mj—point sub-partition of the
k

partition P in (9.28) of the closed sub-interval [tj,_,, ,tx] of [to — 7,T] for k € I(0, N).

DEFINITION 9.5.3 Foreachi € I(1,K*), k € I(0,N;—1) andm, ' € I(2,ri-1 + 81+ k — 1),
a local finite sequence at i ' of the size mi, ' is restriction [2] of {x(t?l)}i\zjﬂiil to Pi1 in

(9.31). This restriction sequence is defined by
— l i—1\10
Sm;'gl’k = {F x(tzfl)}l:—m;';lﬂ‘ (9.32)

As m?l varies from 2 to r;_1 + S;—1 + k — 1, the corresponding respective local sequence Sm;';l’ i
at ti 1 varies from {x(t;~ 1)}l o, to {x(t7h) ;ﬁ:_—lm_l-i—&-_ﬁl' As a result of this, the sequence
defined in (9.32) is also called a mk_l-local moving sequence. Furthermore, the average corre-
sponding to the local sequence Sm;';l i 1 (9.32) is defined by
< 1 0 1y (qi—1
Switpe = T 2 Fat). (9.33)
l——mk 1y

The average/mean defined in (9.33) is also called the m Llocal average/mean.
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Fori € I(1,K*),and k € I1(0, N;_1), the mz_l—local covariance matrix corresponding to the local

sequence Sm;';l’ i 10 (9.32) is defined by

1,1 1,2 1,3 1,n
m;;l,k m;;l,k mifl,k e m?l,k
$21 $22 $23 $2m
i—1 i—1 i—1 e i—1
S =T T et ik (9.34)
mz—l k . .
n,1 n,2 n,3 n,n
m;c_l,k mz_l,k m;_l,k: e m;c_l,k’
i\l i\l . . . .
where sir’L —— sir’L o k(:p), J,1 € I(1,n) is the local sample covariance statistic between x; and
k k

x; at t;c_l described by

0 0
i—1 i—1
Ly [Pty -y P | x
k a:—mifl—i-l k b:—m;;l-l—l
0
Fog (1) — L1 S Fbgy(eiTl) for small m! !
\Y—1 i1 Nle—1) > k
! e s 9.35)
S, = .
my Lk 0 0
i—1 1 i—1
mi—ll_l 2 Pt ) — == 2 FPa;(t,25) | %
k a:fm;lerl k b:7m271+1
Fog(ti—t)y — - ZO: Foa(ti71) for large m! !
E—1 T 1) | > g€ my,
e b:—mzfl—i-l

In the following, we derive a interconnected discrete-time local conditional sample average/mean
and covariance dynamic processes. This fundamental result is motivated by Exercise 5.15 in [14].
Denoting x(k) = x(¢} ') fori € I(1,K*) and k € I(1, N;_1), we state and prove the following

Lemma.

DEFINITION 9.5.4 Let {E[z; (tﬁ;lﬂ]:tzj] gii—lnq—i—l be a conditional random sample of continu-
ous time stochastic dynamic process with respect to sub-o algebra F, HL t}:l € P1in(9.29). The
mZ_l-local conditional moving average and covariance defined in the context of (9.33) and (9.34)
are called the my-local conditional moving sample average/mean and local conditional moving

sample variance, respectively.

LEMMA 9.3 (Multivariate Discrete Time Dynamic Model of Local Sample Mean and Sample

Ni—1

Covariance Process). Let {E[z;(t; )| F, t;:l] k——r,_,+1 be a conditional random sample defined

in Definition (9.5.4). Let S’m}-{_17 p and Zm};‘l, i be mz_l-local conditional sample average and local
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conditional sample covariance at tz_l. Then, an interconnected multivariate discrete time dynamic

model of local conditional sample mean and sample covariance statistics is described by

Sm;;:ldi71+1,k—di_1+1 =

Zmz_l,k =
where

n

Em};_l,k

Em};—l’k

i—1
k—d;i_y S C Q
— -1 + -1 S 1 =ST
Zfldi 141 Tkd; phdiz T’mz d;_yk—di-1? Tmp7 Tio Tica
.
mz_l—l i1 mz__lj
=1 E P Zml Lk—j
my j=1 H mzfl k—j’
LM
mi 1 — —
k—d;_1 T
+ ‘ S i S i1 +e& i1
d;_1-1 i mk*di,l’k di—1 m;cfdi,l’kidifl my k=1
m
e S
1—1 i—1 i—1
for small m;”~,m;—; < my
d;—1 i—1
ZZ My 1 -
=1 m,_ . k—j
- 1 k—i’
g=1 | TI my_, !
=0
1—1
My_d;, 4 S . S,T_
di_1—1 mi! k—di_1PmiTl  k—d;_4
i—1 k—d;_y’ k—d;_1
ll:[O et
+Em}';_11,k—1’ for large mz_l, m;__ll < mz_l
Yomity =25 1 €11, K”), j € I(—di-1,0), initial conditions
,7 k2

(9.36)

1
n
2
n
= M
n
n
1,1 1,2 RE 1n
m}g_l,k m;_l,k m}c_l,k m}ﬁ_l,k
21 (2.2 2.3 2n
o mz_l,k mz_l,k mz_l,k mz_l,k
- M
€n,1 En,Z 8n,3 n,n
m;;l,k m;;l,k m}“;lJc e m;;lJc
1,1 1,2 RE 1n
mL_l,k mz_l,k m}ﬂ_l,kz T m}ﬂ_l,k
21 22 23 2n
m?l,k m?l,k mfl,k mfl,k
- M
6n,l 6n,2 6n,3 6n,n
m?l,k m;cfl,k m;;l,k m?lJc
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i—1
—Mi g, +1

. 1
T . = =1 > Fzj(k —di-1)
my g, ok—dia Mhe—d;_1+1 i
=g gt (9.37)
il 1 .
_F mk_di71+ Ij(k‘ - di—l)

_mifl
-F k_di—lgj‘j(k’ —di—1) + Foxj(k —di—1)|,

. di_
il my ' =1 |~ F My (k= )F~lay(k - 1)
e yi—l = T
il ko1 i1 t—1 .
k1 my, =1 I1m; !
a=0
di-1 o yp1—mi! —l—m
B =i
=1 H mk:—a
a=0
di1 4 2-mit —2-my
F k*bxj(k — l)F kﬂxl(k — 1)
— —1 .
=1 [I m;g_—la
a=0
B —L+2—m2__1b ]
xi(k — Tk —
; d I J k= DF(k -1
m7],€—1 -1 i-l v:—H—Q—mz:lerl
) —1 .
i b 1T mi,
a=0
r i —L+1_ 17 _
3 Flaj(k — 1) Foa(k — 1)
di—l U7S:7L+27m’]i€:1L+1
v#S
+ Z =1 1
— =
=1 H mk‘—a
a=0
1 0 v S
T Z Faj(k — 1) Fx(k — 1),
My, v,s=—mi 41
o= k
v#£S
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i e Pk - 1)F‘L+1:cl(k ~1)
m?_ﬁ,k:—l o
=1 H mk "
e (k- 1)F*L+1*m?%?3:cl(k —1)
= H mk a
di—1 F_L_,_Q_m;:_l ‘ —42—miTl
B v (k — l)F k= (k—1)
= H mk a
1 0
it > Flaj(k— D)Fx(k— 1)
my -~ vs——mi=l11
) k
VES
—1+2— m;c lL T
dio1 2 Frai(k — 1) FYz(k —1)
n i: v:—L+2—m§cilL+l
=1 H mk ,
- —+1 e
5 FUz;(k — 1) Foz(k — 1)
iy | vs=muk2emT
5l -
=1 H mk ;

9.6 Parametric Estimation

In this section, we consider a parameter estimation problem in drift and diffusion coefficients
of (9.23). This is achieved by utilizing the lagged adaptive process [88] and the interconnected
discrete-time dynamics of local sample mean and variances statistic processes model in Section 9.5
(Lemma 9.3). For each i € I(1, K*), we consider a general interconnected hybrid system described

by the system of stochastic differential equations:

dx'=' = 7Yt x)dt + o, x)dAW (), x(T—1) =X, t € [Ti1,Ty),

, o : (9.38)
X! — szzfl(ﬂ—,Tiilszfl)’

where I = diag(T%, T%, ..., I‘é, ...,T%) is the jump coefficient matrix; the jump times T}’s are

defined in (9.23). For each j € I(1,n), the estimate of the jump coefficient Fé» is given by F; =
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2\ i— .
Let V € C[[—7,00] x R",R™], and its partial derivatives V;, 2 —x and 2 3; — exist and are

continuous on each interval [T;_1, T;]. We apply Ito-Doob stochastic differential formula [70] to V,

and we obtain

dV(t,x=h = LV(t,x""Ydt + Vi(t,x" Do (t,x V) dW (t), x(Ti—1) = x"1, t € [Ti-1,T;),

V(T;,x") = V(DN T, T, x71).
(9.39)
where the L operator is defined by
LV(t,x) = %(t X0 o Vet x T (6 x) + gtr (Vax(8,x71))e(t, x ) ©.40)
e(t, X 1) (R i T ’
For (9.38) and (9.39), we present the Euler-type discretization scheme [58]:
[ Axil(#h) = £t x(6 ) A
+o T (G xX(GT)) AW, ke I(1, Nimy)
Xi — Fixi—l T~_ T ’Xz—l ,
T T, x™) 9.41)

AV (T x N @) = LV x ) A
V(L x NG T)) e T G x (D)) AW ()
V(T;, x") = V(T T (T, T—1,x"71)).

Define ]-'Zk 11 = }7;11 as the filtration process up to time ti:ll. With regard to the continuous time

dynamic system (9.38) and its transformed system (9.39), the more general moments of Ax(tz_l)

are as follows:

B [Ax(t)I75] = T T )AG
E[(AxH () - B [AxH (G F4))
(AaxH ) - B[ax g IFECSD IFECY] = et x )X
z l(tz 11’ i— 1(t7' 1))TAt;€_1,
E [AV (X (G ))F] — LV x ), Al
9.42)
E[(AV(E T ) — E[AVE L x N ) FECL)
AV A1 G - BAVET X e IFEDD T IFD] = BET )
(9.43)

. . . - - . . . T .
where B4 X(74)) = Ve (24X (04) e (A4 x(240) T (6 x) T A ang

T stands for the transpose of the matrix.
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From (9.41)- (9.43), we have

AXi_l(tZ_l) — [sz l(tz 1),}2 1]
+o T (L X TN T AW, ke I(1,N;)
AV(ETL X)) = BAV(E L x T () F

k
HW T L X T T T G X T () AW (1)
(9.44)

This provides the basis for the development of the concept of lagged adaptive expectation process
[88] with respect to continuous time stochastic dynamic system (9.39). This indeed leads to a

formulation of mz_l—local generalized method of moments at t};‘l.

In the following, we state a result that exhibits the existence of solution of system of non linear
equations. For the sake of easy reference, we shall re-state the Implicit function theorem without

proof.

THEOREM 9.1 Implicit Function Theorem[2] Let F = {I, F>, ..., F;} be a vector-valued func-
tion defined on an open set S € RIT* with values in RY. Suppose F € Cy on S. Let (ug;vo) be
a point in S for which F (ug;vo) = 0 and for which the q X q determinant of the Jacobian matrix
det [Jp(vo)] # 0. Then there exists a k— dimensional open set T containing vy and unique vector-
valued function g, defined on T and having values in RY, such that g € C1 on Ty, g(vo) = ug, and

F(g(v);v) = 0 foreveryv € T,.

9.6.1 IMlustration:

For each j,1 € I(1,n) and each i € I(1, K*), we consider a special case of (9.12).

dy; - ( ; ' y]> [ﬁé}jl% +ZK’JI i dt+5§;1 (uj —y]> W)

. n
+ (U;-_l - yj) ; 0 ydW(t), yi (Tia) =y, t € [Tioa, Th),
I#j

vi = my (7 Doy, ©.45)

dp;(t) = pj |7, (yrpj)+ﬂ}’1+§v}jlpz() dt + o' pjdZ; (1)
i

n . .
+pi Y- 0t ' mdZ(t), pj(Tica) = p5 ' t € [Ti, Th),
=

vy = O (T Ty e ).
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utL gt At sl oL are the system parameters on the jump subinterval [T;_1,T;);

Hereﬁ]l, ] ,’y]l le a5
ut, gL AL 5’ Uand o%~! are positive; and for | # e Ry 61 ot are
i Mg T jg e p TR gl 95

nonnegative. W and Z are independent standard Wiener process on a filtered probability space
(Q, F, (F)t>0, P) with the properties described in (9.12). It follows that the interconnected system

of stochastic differential equations (9.45) has 4n? + 2n parameters, Also,

> 0 if y; is cooperating with y;,
<

{/{j,l}li;jl' 0 if y; is competing with y;, (9.46)

Il
o

if there is no interaction between y; and y;, 7,1 € I(1,n),
and likewise,

> 0 if p; is cooperating with p;,
{4, l}l# < 0 if p; is competing with p;, 9.47)

= 0 if there is no interaction between p; and p;, 7,1 € I(1,n).

REMARK 27 For the case K = 0, (9.45) reduce to

dt + 5]'71' (Uj — yj) de}j(t)

n
dy; = (uj —y;) [fij,jyj + > Ky
12

+ (uj —yj) D2 65,mdW;i(t), yj (to) = yjo, t € [to, T,
17 (9.48)

dp;(t) = pj [’Yj,j (yj —pj) + B + l; Viapi(t) | dt + 0,5p;dZ; 4(t)
J

+p; Z ojpdZ;(t), pj (to) = pjo, t € [to, T,
I#]

where for j,l € I(1,n), the parameters x;;, uj, 85, Vj,, 9;; and o;; are the system parameters on
the interval [tg, T']; uj, Kjj» Vjj» 05, and oj ; are positive; and for | # j, k;1,7;1 € R; 0;,, 0 are

nonnegative.

For each j € I(1,n), we pick a Lyapunov function

Vij(ty) = ()7,
Vaj(t,pj) = (pj)?,

(9.49)
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in (9.39) for (9.45). Using Ito-differential formula [70], we have

dvi; = |q(y;)"" 1( —w)( yﬂrzf%z yz)
thala— 1) ()2 (™ — )’ ((53‘,3‘1) ﬂ;j (5:2") 92>] dt
o) (7 ) [éé,;ldwj,j(t) 3 6;;1yldwj,z<t>] ,
yi (Tis) =y, ', t€ [T, T)
Vi = () w0 Ty )it =1
dVa; = (pj)* [q o l(yj—pj)+ﬁ§1+§h§,llpz>
+3a(g —1) ((Uﬁfjl) + Z (vi7") P?)] di
+q(pj)? |01 dZ;4(t) + ZO'” 'pidZ(t) |, pj (Tima) =pi Y, t € [T, Th),
vio= () e (00 Ty e ) it = T

(9.50)
By setting Aty ' =t 1 — 1L = At; Ay(er ) =yt ) —y(6i2Y) and Ap(¢p Y = p(th ) —

p(t; ")), the combined Euler discretized scheme for (9.50) is

A = a6 (w7 - weh) < () + Zﬂ]z u t%i))

+hala 1) ()" (@) (w7~ - @/j(tiill)) <(5§El)2

+3 (6;1,11)211%@;;_11))] At
I#j
) ) (7 = i) [ AW

+X 5§J1yzAWj,z(t?;1)] :
7

vj <ﬂ D=yttt e [T, T,
i\? _ . i—1\d ipq _ T
y] - 7'(']- y] (z‘; 7E717y ) ’ ift = ,I'l’

9.51)

135



Ap)' 7 = @) () [q (7}3%%(%‘%) —pi(t=) + 67+ ZZ;) Vg P (ﬁ;ﬂ))
J
. 2 n . 2 .
hala—1) ((0}31) +3 (o) p%(t%;ﬁ))
J

. . . n . . .
+q (p)? (t,74) laﬁ‘,jlﬁzjd(tkl) + l;, Uéllpl(t;c—ll)AZjJ(t;cl)] ,
J

At

pi (Tioy) =pi 't €[4, Ty), g € I(1,n + 1),
A\ 4 ND B - - .
(p3‘) = <9§) Py (T T,y p ) it t =T

(9.52)
where {Y(t?l)}ngm,l’ ) 2:42,71 are given finite sequence of ]-'%;_11— measurable ran-
dom vectors, and are independent of {AW(tZ_l)}iV;Bl, VA ]kvial, respectively. We define
A ()" (6571 = ()" (171 = ()" (2 and A (p)? (571) = ()" (671) = ()" (H21).

Applying conditional expectations to (9.51)-(9.52) with respect to ff:l = f;‘;ll, we obtain
( s :

E[A ()" (5 )IF] =

a ()" () (ui = ) (@-jyj(tz:a )+ 2Rt
j
-1 9 i i C1\2 | i (9.53)
U ()" (G)E [ (A () — ElAg (6 )IFT) 1| A
for t, " € [T;-1,T7),

E [<y§>q (ti’l)lfz'iﬂ = (W;)q () (T, Tima,y Y, ity ' =T,

E[A(py)? (t DIF] =
NG (g1 i1, pimly il i—1 | N il (el
q(pj) (tk_1) (’Yj,j (yj(tk_1) p](tk—l))+6j +l§'7j’l Pl(tk—1)>
j
a(@=1),a=2i~1\m [ ( Ap: (£~1) — B[Ap. (i1 Fi-1 2 Fi-1]] At
5945, P (tp_1) ( pi(ty ) [Ap;(t, )| k_1]) | Fi_q )
for ;' € [T;-1,Ty),

N\ q N\ g . : L
CE|(25) 171 = (62) 00)" (7, Ty L) i =T g € T(n+ 1),

(9.54)
(B [(A ()" (1) — EIA ()" (£ HIFZL) x
(A (! (6,71 = EIA () (¢ HIFZ) 1FCL] =
@ ()" (th) (U?l —Yj (t2111)> (v = w(th)) {%3155}191@2111) (9.55)
e ) Y 631,70163#3/3@3;_11)] At,
r=1j,1%r
it e o1 — 71, Th),
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E [(A () (61 = E[A ()" (17 HIFI])
(A ()" (67 = EIA () (47 HIFI) [FI] =

A A (9.56)

1 _i-1 -1 1_i-1 -1

205 o) yi(t) + Z ar o), y?(tz_l)] :
r=1l#r

1—1
¢ (pip)? (t_4)

j#lgel(1,2n)

where F, ,i 1 is the filtration up to time t;;ll. From (9.53)-(9.56), (9.51) reduces to

;

Aly)? (") = E[A @) 6 IR
0" (G2 (u ! = (2D [0 AW, ()

+l§.5j,l"‘1yzAWj,z(t§;1)]_%- (i) =4t € [T, T2),
J

(y;') = <7T§') (y)) " (T, Tim,y' ), if =T,

Ap)? (7Y = E[A () (5 H|FY

+q (p;)? (t?;_-ll)[ INZ; (T 1)+l§ ot )AZ |
J

pj (T ) pl ! tZ 1 [Ti—hTi)v q¢€ I(lvn+ 1)7 JE I(l,n),
()" )" (17 Ty oY) it =T

()

(9.57) provides the basis for the development of the concept of lagged adaptive expectation pro-

(9.57)

cess [88] with respect to continuous time stochastic dynamic systems (9.45) and (9.50).

For k € I(0,N;_1), applying the lagged adaptive expectation process [88], from Definitions
9.5.1 — 9.5.3, and using (9.53)-(9.57), we formulate a local observation/measurement process at
ti_l as a algebraic functions of mi_l—local functions of restriction of the finite sample sequence

(v Ni-1 o and ) Ni-1 o subpartition P! in Definition 9.5.2 :

l=—r;_1 l=—r;_1
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( k-1 '
S [a @ (w7 - with) x
5 v=k—mi~!
-1
i1\ -1 _ . ,
k:z’ IE[A W) EOEA] = <H;,_jlyj(tl D+ Z’%l yz(tfj))
L= mk
Q(‘Z 1) q=2 (yi=1y v
| +55ar (W) (6 21)s mi! kAy]:| At,
( k-1 i . -
2 1 [q (py)" (£.73) (’YJJ (y;(t=1) = pi(t,21))
o1 1=k—m;~
i—1y| -1 _
L ERE)EDIFSE] = 87 S ume)
v=k—m}~ iz
q(q=1) _q—2/,i—1\ _J.j
| +558 p; (t,Z1)s il’k’Apj:| At, geI(l,n+1),
(9.58)
and
oIl q 1 = q—1 (yi—1y (i1 i—1 i1 i—1
S A = = X @ @ (b - yh) (7 - wnh) x
b ko =k— mz 1
SR G R U R i Ul B
J#l#r
k—1
il - _ .
P AEY = o T ) (67D [0 el ) + ol o mr)
b bo=k— m;c !
- 1 _i—1,20i—1 .
+ Zl U;, Ulzr pr(t,_1) |, J#1l g€ I(1,2n).
r=
JAlET

(9.59)
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=
s
,_.
“’i
H
Mk
s
,_.
/—M\
\“,_/
“
-
S—

- (ti’l)lff:%] E [A () (¢ z’*f>|ff:%} H{ahei) ),
ph) EOFS] 8 (e }tzl)
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Il
Q

S
Q
/N
=
uog
“
H
Qq
s
,_.
%,—‘H,—’A/—’R,—/
,_.
N— N N
Il
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Q
N
=
—
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' —1" e —1 (i i— i
qu (ué_l, {K;’_’:l} ) - mi,}l Z - { |:C] (yj)q ! (th%) (uj t- yj(tl,f%)> X
a 1=k—m;~
(£ mianttich)
=1
S ()" (tﬁ:i)éﬁji_l,gij)] At}

k—1 .
L ¥ 1E[A(yﬁ‘?(ti-1)|ﬁ:ﬂ,qem,n+1>,

L:k—m;;
F 51’—1 52’—1 n _ 1 kil 2( . )qfl (ti—l) ui—l_ ~(ti_1) %
2q e 2 Ole f g T mil ,1q Yy —1) (U5 Yill,—1
1=k—m;~

—1 i—1 i—1gi—1, (gi—1 —1 i1, i
(v = w(t2) [‘% 0 i (621) + 0 0 ()

n . . . R ',l

+ Z 5;',t1511,t1yt2(t2—b - i—1 (A (y)q)a
=1 my ok,

JAlFr

j#lel(l,n), qe I(1,2n)

on (L) = a5 {leeresh (5w - i)

¢ "k L=k7m271
=1 | NN i1 i1
"‘Bj + ; Vje pt(thl)
t£j
Z1) ge2 i is aiid
+Q(§At)l’? (ti—l)sfnjzgk(Apj)} At}
k—1
. -
——r » E[A@)(TOIFS], e I(ln+1),
k v=k-mi "
i-1 _i—1\" 1 k=l 2 i—1y [ =1 -1 /i1
Gaq ({Uj,t 1Ol }t_1> = T > 4 (pjp)? (£,27) [Uj,j o pi(t1)
N 1=k—m;~

n
o o
toi o) X oo p ()

R
_§in’l§;1 k,A(p)?’ j#lelI(l,n), g I(1,2n).
(9.60)
For every j € I(1,n), we have
i1 11"
qu (U; ) {K/‘Zj’t }t::l) — 0’ q c I(17n + ]_)7
- . n
Fyq ({5§;1,5f;1 t:1> = 0, g€ I(1,2n), oo
i—1 f i—11" (9.61)
Giq (63' 7{7j,t }t:1) = 0, ¢geI(l,n+1),
. . n

Let us define I} = {qu}qel(1,n+1), Fy = {ng}qef(172n), G, = {qu}qel(l,n—i-l)’ and Gy =
{GQq}qGI(l,Qn)-
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Thus, provided that the determinant of each of the Jacobian matrices JF} ( i1 {/{ézl}n ),
’ =1

i1 i1 i—1 i—1 1 1
JFy <u; ,{6& }lg(l’n), JGq <ﬁ; ,{7;-71. }t:1> and JGo ({ ;t ,al’t }Pl) are not zero,
by the application of Theorem 9.1 (Implicit Function Theorem), we conclude that for every non-

constant m] *-local sequence {y;(t; ') f kl i1 and {p;(t; ") f kl -1 there exist a unique

solution (1 ; Ymi e, B?fl(mifl,tz b, {AZ i, {'yj7t no(mi e,

{(5Z B mistheh), {” e (mi7t 67 h)) of system of algebraic equations (9.63) as a point
estimates of uZ ! {/<;2 L L {W;tl}t 1> {51 hn {0‘;;1 T 1, j € I(1,n), respectively. In the
next section, illustrating this approach using energy commodities natural gas, crude oil and coal

[26, 27, 28], we show conditions in which the determinant of the Jacobian matrix is not zero.

9.6.2 Illustration: Application to Energy Commodity

In this subsection, we present an illustration regarding the natural gas, crude oil and coal [26, 27, 28].

Here, j € I(1,3) and ¢ € I(1, K*). Moreover, (9.45) reduces to

dt + 67" (uj_ - y]) dW; ;(t)

1 i—1
dy] = (u; ) !I‘L;J yj + Z I{', l yl

+ (u} 1_%)2 SudWiat), vy (Tia) =i L€ [T, To),

Y = why (T;, Tim1, ¥ 1), 9.62)
. . 3. ’
dpj(t) = p; [v},jl (y; —p) + 8, +l§. Vit m(t) | dt + 07 pidZ; 4(t)
Y
3 4
+pi Y- ot ' mdZ(t), pj(Tica) = pi ' t € [Ti, Th),
7
P} = Op; (T, Tir,y " Lp' ).
For each j € I(1,3), following the argument used in Illustration 9.6.1, we have
5 1 k-1
F, <u g {K;,J}t:l) = o > {le) D (o - wTh) <
L mz !
(St )
=1
q(q —1)

L D ()] aef
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G, (5; ! {’YN }11)

k-1

1
——— Y. E[A@)'E HIFL], g€ 1(1,4),
My, 1=k— mzl
1 = ,
= Y ) D (w - yth)
M, 1=k— mzl

(™ = D) [3551015 w (D) + 817 037 (e )

) ) ) gyl
Z)%%12t1>—%5%m@m,
;él;ét

j#1el(1,3), g€ I(1,6)

k—1
= Y {er @ (5 D - i)
:kfm;;l

7;7
my

+B85” 1+Z%t pe(t; ")

t#£j
q(q - 1) 72 ads.
+A Dy miwawmmﬂm}
. k-1
T E[A(p)? (67 DIF L], q€1(1,4),
M 1=k— m}g 1
) k-1
i—1 1 el (i1
= o X P 00 [0} el mih)
koo —p— mz !

3
i—1 _i—1 zl 1111211
+UllalpltL1+§:a o P (t, )

and for j # | € I(1,3), we have

j,t
=1
J#lF#r
_Aj,l .
8m2717k7A(p)q7 .] # l S I(173>7 q S I(176>.
it 3 - 0 (1,4
—1 - 9 qe ( ) )7
P, {5;3,51 1 > = 0, g€ I(1,6),
. (9.63)
Gl (55- L }t 1) = 0, g€ I(1,4),
({513, ;tl )= 0 qer@e).
T=

We also F; = {qu}qe[(l 4)» Fy = {F2q}qel 1,3)» G, = {qu}qel(l 4)> and G = {G2q}q61(1,3)'
. n

Thus, for each j € I(1,3), the determinant of the Jacobian matrix J F ( =1 {/{’Afl} 1) is given
=

J?t
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k—1
by m%ldet > J.|,where 7, is define by J, =

4
( k ) L:k—mz_l
té Rjete(ti71) (uj =yt (621) (wj — i (-1)y2(t 1) (uj = y;(t21))ys(t21)
2 é Ry (DY (71 20wy — (2w (D (ET1) 20wy — yi (2w (G- Dy2 (2] 2wy — yi(671))y5(E ) ys(871)
32 i)Y (21 3wy — yi(ZD)y (D (21) 3wy — yi (6-1)y (- Dy(t21) 3(uy — y(E2D))yi (6 )ws(t21)
4; Rt (DY) 4wy — y (D)) (D (621 4wy — g (E-D))y (- Dy (671) 4wy — yi (02w (- Dys(6-1)

k—1
and det > T

_ i—1
t=k—m,

k—1 n k—1
= ) [an,tyxti:b] vt > (i -y (D) E D () %
_mi-1 L=1 — ki1

1=k =
Yo (g TG Dus () Y (g =y (6T))yi (67 1)ye (87
1=k—m’ "1 L:k—mz_l
k—1 k—1
— > (=D Y (=g (T ))y (T Dws(t7])
J Y\t —1))Y2(t, 1 J Y\t —1))Y5\t,_1)Y3t, 1
L:kfm;“:l L=k7m271
k—1 n k—1
+ > Do) D) D (i =y (D) Dy (67 x
geYell, yj t—1 J Yi\t, 1 yj —1)Y1,
1=k—mi~1 Lt=1 L=k7m271
k—1 k—1
> (=g (D)) Dys (87D Y =y ()i ()
J Yi\t,—1))Y5 (L, 1)Y3\t, 1 J Yi\t,—1))91\t, 1
L:k—m?l L:k—m;:l
k—1 k-1
— Y (g D)y DT > (g — () ws(t])
L:k—m;;_l L:k—mz_l
k—1 k-1
& , i—1N | 3/4i—1 ' =1\, 2/ 4i—1 i—1
+ D [Zwtm_l)] v 2D Y (= g2y D (1) x
L:k—mf@_l =1 =k—mt~!
k—1 k-1
D (=g D) wetiT) Y (= )y Dy (6]
L:kfm?c—l L:kfmz_l
k-1 k—1
i—1 —1 i—1 i—1 i—1
— Y (gD D (= g D)y (4 Due(t])
L:k—mifl L:k—m?l
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k—1 n k—1
+ Y [Z mj,tyxtz_%)] T Y (w =y (D)) D () x
L:k—m?c_l r=1 L:k—mz_l
S (-t D (= (D) (- Dys(E])
L=k7m271 L=k7m271
k—1 k—1
i—1 i—1 —1 i—1 —1
= Y (gD Y (g — (D)) y (B Dy ()
L:k—m;ﬂ_l L:k—mi_l
k—1 k—1
i—1 i—1 i—1 i—1 i—1 i—1
+ Z (uj =y (6217 (81w (1) Z (uy =y (6,21))y; (6, 21)y (6, 2) x
L:k?—m;;71 L:k—m?l
k—1 ' ' k—1 n ' ‘
S -y D)t Y [Z Hj,tyt(tfj)] yi(t-1)
L:k—m};l :k—m};l =1
k—1 n ' k—1 4 ' )
- > [Z nj,tyxtz—i)] o (=g (D)) (s ()
L:kfm?;l r=1 :kfmf;l
> (- DY) Y (wy — y () Dy () X
L:kfm;:l L=k7m271
k—1 n ) k—1 ' ' 4
> [Z mj,tyt@z—i)] > (gD (E Dt
L:k—m?l =1 L:k—mﬁ:l
k—1 ' ‘ k—1 n ‘ ‘
- D (gDt D [Z ffj,tyr(tfj)] yi(t=1)
v=k—mi~! i=k—mi~" =1

k—1

n k—1
3 [znj,tytuz:i)] BED S (4 g «
L =1 :k_mi—l

1. 7—1
t=k—m,

k-1

k—1
> (w—y DT Y (= () (T Dy (6]
L:k—m;'c_l L:k—mz_l
k—1 k—1
i—1 i—1 i—1 i—1 —1
= Y (gD D (= g D)y (4 Dys(t])
L:k—mifl L:k—m?l

143



k—1
(- E D) Y =y (D) (T Dye () X
L:k—m?c_l L:k—m;c_l
k—1 n ‘ k—1 4 ' 4
> [Z nj,tyt(tib] > (= gDy (s (1)
L=k7m271 =1 L=k7m271
k—1 A . k—1 n . .
S MRUEHUSIRUSIND Dl St PR
v=k—mi~! v=k—mi~! =1
k—1 k—1
Mo (w— gD DT D (g — g (D)) (T Dye (6 ])
L:k?—m;;71 L:k—m?l
k—1 k—1 n
(] 4i—1 o (8 | s (1
Z (uj —y; (6, 21)ya (621) Z Z’%t@/r( —1) | wi(t21)
1=k—mi~! :k—m};l =1
k—1 n k—1
- o 1 .
- > [an,tyxtzi)] D PR Gy TGy Y Gt
:kfm;“;l =1 :kfmf;l
k—1 n k—1
> [Zw,tyxtibl yitTD) Do (=g (T (G2 ys(tZ]) %
L:kfm;:l =1 =k—m’:~!
k—1 k—1
S -y D) n ) Y (= () y (T Dy (E])
Uy Yi\ly—1))Y1t, U Y\t —1))Y5\t,_1)Y2(t, 1
L:k—m?l L:k—m;:l
k_l . . k_l . . .
— Y (gD > (=g (D) (D (1)
L:k—m;:l L:k—mz_l
k—1 k—1
S (- E D) Y (- g (D) (s () X
L:k—m};_l L:k—mz_l
k—1 k—1
2 e S [Smant] we
i =y (6 21)y2(6 1) Z Z“J,tyt( —1) | ¥t 21)
t=k—mi~1 i=k—mi" =1
k—1 n k—1
. i—1 —1 i—1
- > [ij,tyxtz_i)] D ARGy 1 Gy 121 )
L:k—mifl =1 L:k—m?l
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k-1 k-1

> (g TG Y (g =y ()Y (G Dys(671)

1=k— mz L 1=k— m;c !
k—1 n k—1
> [Z mj,tyt(tib] Do (=g Ty (v ()
L=k7m271 =1 1=k— m;c 1

b= k-1 n
: Z Bt 2 [foj,ryxti:b] wth)
= m =1

i1
t=k—m,

33
For j # [, the determinant of the Jacobians J Fy <{5’ ! 6§t1} ) JGy <5’ ! {’yﬁl} 1)
=1 ’ =

Jr

. 33
and JGo ({o';,t17 0'%:1} 1) can be derived in a similar way. For each j € I(1, 3), it follows that
b K r:

3
the determinant of JF} < ; ! {Fa;_tl} ) is not zero provided that all parameters {“J}t}f—l are
’ =1 -

k—1

not zero or provided the sequence {y;fl (tﬁ_l) } ., is neither zero nor constant. To show
r=k—m; —1
k

. \3
this, suppose that the determinant of J F} < ; L {Fa;_tl} ) is zero. This is equivalent to either
’ =1

one of the following;

e The rows of the matrix are dependent vectors in R4,
e The columns of the matrix are dependent vectors in R?.

e Either one of the rows or columns of the matrix is a zero vector.

This is equivalent to saying either all parameters {mj,t}gzl are zero, or the sequence

k—1
it } _ is zero or a constant.
{y] () =k—m} '—1
3
Likewise, determinants of the Jacobians JF» < {5; tl’ 5t tl} )
=1

A N3 A 3
JGq <ﬂ;_1, {7;;1}171) and JG9 <{0‘;;170t7t}t1> are non-zero if

{0, 0 t}le, {fyj7t}?:1 and {0+, (fm}f’:1 are not zero or provided the sequence

. k—1 . . k—1 . . k—1
P 6} e W GE e o { )
{pi=t (i 1)} kl ~1_, are neither zero nor constant for j # [ € I(1,3).
k—1

REMARK 28 If the sample { (tZ 1) } is a constant sequence, it follows from (9.51)

1
tkmk -1

(g=1) and the fact that A ( (tz 1)) = 0 and Si%*l,k(ij) = 0, that uz-_l(mz_l,tz_l) —
k—1 o o
L ¥ y;._l(tfl) It also follows from (9.58) that {/<cZ N3 mih et —o.

m i—1
v=k—m,~
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Chapter 10

Computational and Simulation Algorithms

10.1 Introduction

In this chapter, we outline computational, data organizational and simulation schemes. We intro-
duce the ideas of iterative data process and data simulation time schedules in relation with the real
time data observation/collection schedule. For the computational estimation of continuous time
stochastic dynamic system state and parameters, it is essential to identify an admissible set of local
conditional sample average and sample covariance parameters, namely, the size of local conditional
sample in the context of a partition of time interval [T;_1 — 7;,_1, T;]. Moreover, the discrete time
dynamic model of conditional sample mean and sample covariance statistic processes in Section
9.5 and the theoretical parameter estimation scheme in Section 9.6 motivates to outline a computa-
tional scheme in a systematic and coherent manner. A brief conceptual computational scheme and

simulation process summary is described below:

10.2 Coordination of Data Observation, Iterative Process, and Simulation Schedules:

Without loss of generality, we assume that the real data observation/collection partition schedules
Pi=1, i € I(1,K*) are defined in (9.29). Now, we present definitions of iterative process and

simulation time schedule.

DEFINITION 10.2.1 The iterative process time schedule in relation with the real data collection

schedule is defined by

{ Pt = {pradisty for 6 € P, fori e I(1L,K*), k€ I(—ri—1, Ni—1),
(10.1)
where F*”Flti_l = t;;lmil is a forward shift operator [11].
The simulation time is based on the order d;_1 of the time series model of m?l—local conditional

sample mean and covariance processes in Lemma 9.3.

146



REMARK 29 For the case where X = 0, we have IP;_; = IP, where P! = P is defined in

(9.28). This is the iterative time schedule in the absence of jumps.

DEFINITION 10.2.2 The simulation process time schedule in relation with the real data observation

schedule is defined by

S]Pﬂ',l o {F”ilt?;l : fOl’ t;;l € Pi_l}v lf difl S Ti—1 (10 2)
{Fpi—1t2—1 : for tz_l € ]Pi_l}, if di_y >mri—1, k€ I(—T‘i_l,Ni_l).

REMARK 30 Foreachi € I(1, K*), the initial times of iterative and simulation processes are equal

to the real data times ¢/

~, and tii:_ll, whenever d;_1 < r;_; and d;—1 > 7;_1, respectively. The

iterative process and simulation process times with jump are t2_+1ri,1 and t?;ldiil, i€ I(1,K*),

respectively.

10.3 Conceptual Computational Parameter Estimation Scheme

For the conceptual computational dynamic system parameter estimation, we need to introduce a few
concepts of local admissible sample/data observation size mf,:l—local admissible conditional finite

sequence at tf;l € SPi~!, local finite sequence of parameter estimates at t}:l.

DEFINITION 10.3.1 Foreachi € I(1, K*), and t;;l € I(T;—1 — 1i—1, T;), we define local admis-

sible sample/data observation size mz_l at tfc—l as mz_l € OS,i_l, where

) i i — ifd;—1 < ri_
OS]Z{fl _ I(2,’I“z 1+Sz 1+k 1)7 lfdz 1 >Ti—1, (103)
I(Q,di_l +Si-1+k— 1), ifdi_1 >mri—1, k € I(O, Ni—l)

Moreover, OS,Z'C_1 is referred as the local admissible set of lagged sample/data observation size at

i—1
#i-L,

REMARK 31 We note that if K = 0, S;_1 = 0, the point tf:l =ty € [to,T). Thus, (10.3) reduces
to
12,7 +k—1), ifd<r

oSt =
I12,d+k—1), ifd>r, ke I(0,N)

DEFINITION 10.3.2 Foreachi € 1(1, K*), mz_l = OSl,i_1 in Definition 10.3.1 and k € 1(0, N;_1),
a m?l—local admissible lagged-adapted finite restriction sequence of conditional sample/data ob-

servation at time tz_l to subpartition P,i_l of P~V in Definition 9.5.2 is defined by
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<{E[yl l(tz 1),}7 1] s k mz 17{E[pz l(tz 1)‘ } ;C:_]gl—mzl> Moreover, a mi‘l_ class Of

.. ... . . i—1
admissible lagged-adapted finite sequences of conditional sample/data observation of size m;,

at t};l is defined by
{{Eb,z 1 tz 1 ]_-lz 11 }l . mk 1}
{{Emz 1tz 1)|f-lz 1] l . m }

In the case of energy commodity model, for each i € I(1, K*), m}’;l € OS,Z;l, we find corre-

i—1 i—1"
m, €05,

AS;T = (10.4)

mi~teosi™!

sponding m}:l- local admissible adapted finite sequence of conditional sample/data observation at

6 (B AL B I ) Fori € LK), using

this sequence and solutions of (9.63 ), we compute

I=k—

5, 77l

ul T mge, ), B () R i ), g ), 8 (e,
ot M mi Lt ), k€ [0,Nia], for j,1 € I(1,n).

This leads to a local finite sequence of parameter estimates at t;;l defined on 05’}:1 as follows:

L) 7 Il 77l

Az 1 —1 4i—1
my ,t } . .
i ( Tk ) mi-teosi!

{a§—1(m2—17t2—1)7B;—1<m;€—17t§€—1) "%i'_l(mk 1 tz 1) &é—l(m;;—l’t;‘f—l) 5z 1( i— l,t;;—l),

The above defined collection is denoted by

J » V4l

(Z/[k,Bk,le;,’Yk,(sk,Uk) = /3/;‘;1(7712_17tz_l)(s;‘,_ll(m;;g_lvt,i;_l)7 A;ll(mz ! tZ 1)}

{ﬂi'il(mﬁ;l,tzﬁl),B‘;il(mﬁ;l,tiil) I%ifl(mk 1 tz 1)

mi~leosi=t’
forj € I(1,n), ieI(1,K*).

10.4 Conceptual Computation of State Simulation Scheme

For the development of a conceptual computational scheme, we need to employ the method of
induction. The presented simulation scheme is based on the idea of lagged adaptive expectation
process [88]. For j,1 € I(1,n), an autocorrelation function (ACF) analysis [14, 11] performed on
(s] I k(y) s’ ’217k(p)> suggests that the interconnected discrete time dynamic model of local
conditional sample mean and sample variance statistics in Lemma 9.3 is of order d;_; = 2. In view

of this, we need to identify the initial data. We begin with a given initial data (y'~* (T;_1) , p*~ ! (Ti-1)),

({251 @b o5 At (P b o1 )
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<{Emi_31,t"_31 W)t teosiyt it (p)}m:leosi_;l) g

<{Sm":11,ti‘f W) it cosints POmint 4in (p)}mi‘lleosi—f) Let (y*(mj ", t70), p*(my ' 67h)
be a simulated value of (E[y' (¢, )| 7, 1], E[p* 1 (¢, ")|Fi_}]) at time ¢} ! corresponding to an
admissible sequence {E[yi_l(tﬁ'*l)\}}i_*ll],E[pi_l(tlifl)]}'l":f]}f;,g_mk € AS;!. Forg =1, and

j € I(1,n), the simulated value

(y](mk Ll = y; b mi=t ), pj(mz_l,tz_l) Ep;._l’s(mz_l,tz_l)) is generated from the

discretized Euler scheme (9.51)-(9.52) as follows:

v ) = i )+ (u mi ) - g mi 6D )
[léﬁggl(m; L iy (i 11,75% 1)} At+( ~L(micL pi-l)
—ymi ) ) [0 o ) AW (i 1)
+l§j§;ll(mk 1”5;@ Vi (mk 17’52 11)Ale(mZ ' tz 1)]=
ty ' € [Ti1,T)),

y; " (T7) = my; (T Ty ),

Pyt = psmi ) (1 [ o i) (s omih )
—py(mi Tt 11>)

+687 i ) + Zv;; (my_y, t_y)p; (mﬁ;_ll,tz_ﬁ)] At)

+a;]1(mk Lot 1)pj(mk VtTDAZ (mi
+Pj(mk ot I)ZU Hmp s )P (i ) AZ(my T 6,
ty 't € [T, Th),

p;}S(TZ,—) _ G;p; 15(1}—7ﬂ_17yi71,37pi71,s).

(10.5)

To find the simulated value y; (T;) and p* . *(T;), we need to estimate 7 > and 9’ by first simulating

.717 . 1 1
tl~l>r’1r"l*y (t7ﬂ—17yl S) = yJ(mAZN l’tl N;— 1)
and
1 -1, i—1, _ 1 —1
tgrql}—pz (t, T,y ) = pj(mZN Ly
as follows:
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i—1 i—l)

i—1 i—1
yJ(mN 1’th 1 t

= yJ(mN N 1)
i—1 1 1 i—1 1
+ (u; (m§V 1— 1’tlz 1— 1)_yj(m§\7¢—1—1’t§\h 1— 1)> X
1 1 1
[ZH mN 1= 1’{?\/1 1= 1)yl (mﬁv 1— 1’#1 1= 1>At

1 1 1 1 —
+ 5;J (m3V 1— 1’t§V 1— 1)AW]J(m3V 1’tlz 1)

1 1 1 1 1 1
+ Z(SZ mN@ 1— 1’t3\71 1— 1)yl(m3\7 1— l’tlz 1— I)AVVJl( N, tzz 1) ’

I#5
1 i—1 1 1
pJ(méV 1’t3Vz 1) = (pj(mé\f 1— 1’tlz 1— 1)
1 i—1 i—1 i—1 1 1 1
+ pJ( . —1— 1’t3\fi—1_1) [7;,]' (mlNi—1—1’tl Nij_1— 1) (yj( . —1— 1’tl Nij_1— 1)

1 -1 i—1 1 1
- p]<mzv o)) + BT it )

1 1 1 1

+ ny]l 3\7 1= 1’tzz 1= 1)pl<m§\7 1— 1’tzz 1— 1) At

I#5

1 i—1 i—1 1 1 1 1
+ p](mﬁv 1at3vi_1—1) {U;',j (m3\1 1— 1th1 1— VAZj i(m ?\/ tll 1)
1 1 1 1 1

+ Z -1— 1’tzL 1= 1)pl(m§\7 1= 1’t3\7 1= 1)AZ l(mﬁV 1’t§V 1)

I#j

From this, we calculate 7?; and é} as:

i By N(mlFL L]
] - ’L 1 1—1
’ N1t (10.6)
A Elp}~ ( )lf%._,l}
g0 = LAk
J pj(mNi—l’tNi—l)

Thus, y7*(1;) = 7y " (17, Tima, y' ) andp”( D) =0 (T Ty, y e p ).

Let ({y*(m} ', i~ 1)}m2 teosi~ts {p*(m) 1 1)}m;;1605;;1) be a mj ' local sequence of
simulated values corresponding to mk !_admissible lagged adapted finite sequence of conditional
observation belonging to .AS; ', and corresponding term of sequence Uy, By, K, Vi, Ok, ok).
Thus, for each ¢ € I(1, K*), ({ys(mﬁfl,tifl)}m;v leosi~ts {p*(mi )}mk cosi~ 1) are the
finite sequence correspondence of simulated values of (E[y’~*(¢; )| 73], E[pi =L (¢, )| Fi-L))

i—1
att, .
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10.5 Mean-Square Sub-Optimal Procedure

To find the best estimate of (E[y(¢; ')|F; 1], IE[ (ti~1)|F;71]) using a local admissible finite se-
i—1 4i—1 —1 -1 .

quence ({y*(m;, ~,t, )}mi leosi~ts {p*(mi 1t )}mi—leosi—l), we need to compute a finite

sequence of quadratic mean square error corresponding to

(ys(mi 1t 1)}m2 teosi~t p*(mj 1 )}m}é‘:leoslicfl). The quadratic mean square error is

defined below.

DEFINITION 10.5.1 Foreachi € I1(1, K*), the quadratic mean square error of

(Ely(t, )| F), Elp(te 1) | Fizl)) relative to each member of the term of local admissible se-
i—1 gi—1 1 gi-1 - -

quence ({y*(m; "t} >}m2 leosi~h {p*(mit t )}miﬂeosiﬂ) of simulated values is defined

by

—_
—
—

g = i Y B T @ IFES e i - B G DIFS

my it
(10.7)

For any arbitrary small positive number € and for each time tﬁ;l to find the the best estimate from

the admissible simulated values of simulated sequence of

¥ b costs (0 0mi E) icscogir for Bl (DI F1 Blp(ty )17,

we determine the following sub-optimal admissible set of m?l—size local conditional sample

{ Min = {m?;l € OS]ifl : Emzq £ <€}, forie I(1,K*). (10.8)

b,

Among these collected values, the value that gives the minimum = _i-1 ,i—1 for & € [0, N; 1]
k Yk

i—1 1

are recorded as 1, ~. If more than one value exist, then the largest of such mZ ’s is recorded

as m; ! If condition (10.8) is not met at time t’fl the value of mkf where the minimum

;-1 1s attained is recorded as mk ~1. The e— level sub- -optimal estimates of the parame-

min = _,mL 1 4

i—1 k
k
ters { a0 (mi L 670, A1 (mi 60, B m L 60, 8 (ml L 6 A mi e,

&;‘ll(mi_l ¢i=1) } are recorded as

(O R), wE R B, B k), 8 ) k), 2 i B, ol ) k)
}. Finally, the simulated value y*(mj ', ¢, 1), p*(m} ', t."") at time ¢, ' with mZ Lis now
recorded as the best estimate for E[y* ! (¢ )| F;_1] and E[p "*l(tz_l)]f;‘c:l]. The value y* (1 ', k),
p° (i} ', k) is called the e— sub-optimal simulated value of y*(m{ ', ¢, ') and p*(mi ', i ") of

Elyi~(i7")| 7~} and E[pi = (¢ Fj - at s
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10.6 Illustration: Application of Conceptual Computational Algorithm to Energy Commod-
ity Data Set

In this subsection, we apply the above conceptual computational algorithm to study the relationship
between three energy commodities by setting n = 3 in (9.45). The three energy commodities are
daily Henry Hub Natural gas data set, daily crude oil data set, and daily coal data set for the period
of 05/04/2009 — 01/03/2014, [26, 27, 28]. Thus, for each pair (y1,p1), (y2,p2), and (ys3,p3),
the drift and diffusion coefficient function of the stochastic dynamic equation governing (y;, p;),
for j € I(1,3) have 4 and 3 parameters each to be estimated, respectively. Thus, there are 42
parameters to be estimated in total. Using At = 1, e = 0.001, for each j € I(1,3), the e— level
i—1

sub-optimal estimates of parameters u; (it k), 5;-_1 (it k), né;l (i1 k), ’y;;l (i k),

5;31 (M1, k), 0;;1(17%2_1, k), 1 € I(1,3), at each real data times are exhibited below.
10.6.1 Illustration: Relationship between Natural Gas, Crude Oil and Coal: Without Incor-

porating Jump Process.

In this subsubsection, we analyze the relationship between Natural Gas, Crude Oil, and Coal without
the jump process. For j,1 € I(1,3), the stochastic dynamic system governing the three energy
commodities is described in (9.48) of Remark (27). Here, (y1,p1) denotes the mean spot and the
spot price process of Natural gas, (2, p2) denotes the mean spot and the spot price process of Crude
oil, and (y3, p3) denotes the mean spot and the spot price process of Coal.

Using the discretized scheme (10.5), we apply the above conceptual computational algorithm for
the real time data sets namely daily Henry Hub Natural gas data set, daily crude oil data set, and
daily coal data set. Using » = 10, and d = 2, the e— level sub-optimal estimates of the parameters
at each real data times are described below.

The parameters corresponding to the natural gas data set are w1 (1, k), S1 (M, k), k1,1 (7, k),
K12(1, k), k1,30, k), y1,1 (7, k), 1,2 (0 B), 71,3 (00, k), 01,1 (170, k), 81,2170, k), 61,3 (170, o),
o1,1 (M, k), o1,2(My, k), o1,3(1g, k). The parameters corresponding to the crude oil data set are
ug (M, k), Ba(mg, k), ko1 (T, k), K2.2(My, k), Ko 3(, k) 5 y2,1 (M, k), y2,2 (Mg, k), 2,3 (g, k),
321 (Mg, k), 02,2(k, k), 02,3(1k, k), 021 (Mg, k), o2,2(1k, k), 02.3(My, k). The parameters cor-
responding to coal data set are ug(1g, k), B3(Mg ps, k), K31 (1M, k), K32(M, k), £330, k),
V3,1 (M, k), y3,.2(M, k), 3,310, k), 031 (M, k), 03 2(110, k), 63,3 (100, k), 03,1 (Mg, k), 03,2(170, k),

Jg}g(mk, k)
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The following table gives the parameter estimates w1 (g, k), k1,1 (1, k), k1,2(M, k), k1,310, k),
ug, K21 (1M, k), K2.2(Mk, k), k2,300, k), us (g, k), k31 (M, k),
k3,2(1, k), k3,3(1, k) for the decoupled system for y in the case where jump is not incorporated

into the system.

Table 15: Estimates My, uq (mk, k), Iil’l(mk, k), Iﬁ:l’g(mk, k), /ilyg(mk, k), UQ(mk, k), ngl(mk, k),

Ko 2(My, k), ko 3(My, k), us(my, k), k31 (M, k), k32(mg, k), k3,3(M, k) (without jump).

tr Natural gas Crude oil Coal
My uy K11 R1,2 K13 Uz K21 K22 K23 us K31 K32 K33
x10716 x10718 x10718 x10718 x10718  x10718
11 1 | 41593 0.0211 0 0 57.7000 0 0 0 16.7407 0 0 0
12 3 | 42000 0.0111 0 0 58.6313  0.0011 0.0310 -0.0012 | 16.2395 0 0 -0.0376
13 5 | 4.0616 0.0679 -0.0054 -0.0035 | 58.5378 -0.0035 0.0205 0.0032 | 16.2680 0 0 0.1069
14 5 | 40616 -0.0242 -0.0179 0 61.4809  0.0020  0.0098 0 15.5249 0 0 -0.0294
15 8 | 4.0910 0.6416 -0.2898 0 58.9282 -0.0036 0.0128 0.0071 | 16.8286 0 0 0.0513
16 8 | 4.0160 0.2101 0 0 59.6867 -0.0051 0.0080 0.0071 | 17.0888 0 0 0.0415
17 8 | 49575 0.1876 0 0 60.6244  0.0024  0.0052 0 17.4120 -0.0003  0.0001  0.0555
18 8 | 49575 -0.1947 0 0 61.0700 0 0 0 17.2374 0 -0 0
19 6 | 47336 -1.4476 5.8820 0 61.9414 0 0.0043  -0.0086 | 16.8438 0.0001  0.0001  0.0768
20 6 | 25646 0.3319 0.7261 0 62.7899 0 0.0053  0.0082 | 18.3022 -0.0083 0.0027  0.0558
495 8 | 3.9654 0.0591 -0 0 108.2457  0.0038  0.0049 -0.0023 | 33.1313  0.0027  0.0009  0.0363
496 | 5 |4.0421 0.0616 0.0001 0.0017 | 107.5186 0 0 0 33.4224 -0.0005 0.0003 0.0214
497 | 6 | 40514 0.0127 -0.0002 0.0020 | 109.8836 0 0 -0.0001 | 33.3388  0.0002 0 0.0443
498 | 7 | 41646 0.0442 -0.0012 -0.0053 | 107.8013 -0.0021 0.0033 0.0038 | 33.2862 -0.0002 0.0006  0.0343
499 | 6 | 41226 0.0352 -0.0020 0 108.1554 -0.0005 0.0032 0.0039 | 33.2862 0.0010  0.0001  0.0068
500 | 6 | 42625 0.0733 -0.0002 0 110.5101 -0.0032 0.0033 0.0016 | 36.1647 0.0003  0.0003  0.0079
501 8 | 3.1551 0 0 -0.0009 | 110.3071  0.0014  0.0025 0 34.7467 0 0 0
502 | 4 | 41564 0.0914 -0.0002 0 111.1186 0 0.0013  -0.0031 | 49.4050 0.0026 -0.0002 0.0211
503 | 5 | 45799 0.0467 0.0004 0 112.0057 0 0.0027 -0.0043 | 34.7207 -0.0001 -0.0001 0.0216
504 | 4 | 43061 0.0236 0.0002 0.0007 | 112.3186 0 0.0021  0.0015 | 34.4483 0.0019 0.0003  0.0170
505 | 9 | 44325 -0.0015 -0.0018 0.0030 | 106.3345 0 0.0043  0.0001 | 33.7160 0 -0.0006  0.0265
1102 | 7 | 3.5429 -0.0286 -0.0006 -0.0028 | 110.3777 0.0006 0.0045 0 5.2399 0 0.0013  0.0008
1103 | 4 | 3.5601 0.1028 0.0001  0.0001 | 111.1585 -0.0003 0.0083 0 5.4824 0 0.0077  0.0485
1104 | 4 | 3.5314 0.0809 0.0018 0.0090 | 109.0996 -0.0007 0.0095 0.0013 | 11.0949 -0.0018 0.0005 0.1175
1105 | 4 | 3.4439 0.1551 -0.0008 -0.0015 | 106.5667 0.0033 0.0073 -0.0020 | 4.8300 -0.0012 -0.0003 0.1283
1106 | 6 | 3.8206 0.2258  0.0004 0 104.7497 0 0 0.0027 | 4.8300 0 0.0008 0
1107 | 4 | 3.6917 0.2132 -0.0001 -0.0008 | 105.1229 0.0011  0.0039 0 43586 -0.0005 0.0004 0.1418
1108 | 5 | 3.7871 0 0 0 105.3595 0.0006 0.0027 -0.0009 | 4.8000 0.0006 -0.0001 0.1265
1109 | 4 | 3.8445 -0.0405 -0.0011 0.0011 | 102.9022 -0.0044 0.0037 0.0039 | 5.0279 0 0 0
1110 | 5 | 3.8399 0.0212  0.0004 0 102.8313 -0.0020 0.0045 0.0018 | 4.6817  0.0021  0.0041  0.0536
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Table 15 shows the estimates of the e- sub-optimal size 7k, j € I(1,3), the parameters uq (7, k), £1,1 (T, k),
K1,2(Mk, k), K1,3(Mk, k), uz(g, k), k2,1 Mk, k), k2,2(Mmk, k), c2,3(Mk, k), us(e, k), k3,10mk, k), k3,200, k),
k3,3(Mg, k) for each of the energy commodity data sets. Moreover, d < r and the initial real data time is ¢, = t10.

The following table gives the drift coefficient’s parameter estimates u (1, k), ua(1g, k) and
us(rmy, k) for the decoupled dynamical system for y in the case where jump is not incorporated into

the dynamical system.

8 T T T T 140 T
4 1 120 1
6 2 4
100 F B
5 -
a0 A
= 4 7 SN
B0 B
3 4
40 4
2 -
1 o 20 )
0 L L L L L o L L L L L
0 200 400 B00 800 1000 1200 u] 200 400 600 800 1000 1200
time 1, (days) time t, (days)
Yy
70 T
(c)
B0 B
20+ B
a0t R
r
30r B
et &’ 1
10 B

. L L L
0 200 400 BO0 a00 1000 1200
time t, (days)

Figure 25.: The graph of mean level uj(my, k), ua (7, k) and us(my, k) for Natural gas, Crude

oil and Coal, respectively (without jump).

Figures 25: (a), (b) and (c) are the graphs of uq (g, k), uz (7, k), and us (i, k) against time ¢, for the daily
Henry Hub natural gas price [27], daily crude oil price [28], and daily coal price [26] data set, respectively. By plotting
the real data sets (shown in Figure 31), it is easily seen that the graphs of wi (M, k), uz(Mu, k) and us (7, k) are
similar to the graph of the real Henry Hub Natural gas, Crude Oil, and Coal data set, respectively. We expect this to
happen because u;, j € I(1,3) are the expected equilibrium spot price processes described in (9.3). This analysis shows

that the parameters u;, j € I(1,3) are statistic process for the respective mean of the data sets at time ¢.
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The graph of the parameters Hl’l(mk, k‘), /€1,2(mk, k), Hl’g(mk, k‘), /ﬂg}l(mk, k), K,Q’Q(Thk, k‘),

k2,3(1k, k), k3 1(Mg, k), k32(T, k), and k3 3(1, k) for the decoupled dynamical system for y

(with no jump incorporated into the dynamical system) are given below:
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Figure 26.: The graph of interaction coefficients ri (7, k), k120, k), K13(Mg, k),

Ko (M, k), koo(My, k) , K2.3(1h, k), k3,1 (1, k), K3,2(17, k), K£3,3(17, k) (without jump).

Figures 26 (a) — (i) show the graph of the e- sub-optimal interaction coefficient parameters x1,1 (1, k), <1,2 (1K, k),
KR1,3 (T?Lk, k), Hg,l(mk, k), K22 (mk, k) , K23 (mk, k), Ii371(1“hk, k), Ii3,2(mk, k), R3,3 (T?Lk, k) The interaction coeffi-
cients k1, j # 1 are negligible, because each estimate is << 107'®. Thus, this shows that the model describing the

mean spot price, y;, is mainly characterized by the market potential ; ; (u; — y;) yj, 7 € 1(1,n).

The table below shows the estimates of the diffusion coefficient’s parameters for the model gov-

erning y.
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Table 16: Estimates 5171(7?%, k‘), 5172(7?%, k‘), 5173(7?”9, k‘), 5271(7Ank, k‘) ,5272(7”71,%,]{5), 5273(7”71,%,]{5),

(5371 (mk, k‘), (5372 (Thk, k?), (5373 (mk, k)) (Without jump).

tr Natural gas Crude oil Coal
01,1 01,2 01,3 02,1 02,2 02,3 03,1 032 03,3
11 0.0123  0.0012  0.0001 0 0.0223 0 0.0412 0 0.0022
12 0.0024 0.0011 0.0121 | 0.0234 0.0245 0 0 0 0.0112
13 0.0001  1.3425 1.7280 | 1.9811 0.9899 0.9731 | 0.6374 0.6374 0.0123
14 0 1.1267 0.6027 | 2.3258 0.1213  3.9128 | 1.6564 1.6564 0.0004
15 1.15260 0.4287 0.6210 | 2.3252 0.0006 0.5083 | 1.6650 1.6650 0.4565
16 4.9354 0 0 2.3217 0.0120 1.1124 | 1.6724 1.6724 0.8762
17 4.1360 0.0989  3.6877 | 1.6425 0 0 1.7719 1.7719 0
18 3.0410 0.1527 0 1.3105 09167 1.3451 | 1.7630 1.7630 0
19 2.7713 0 0 1.1052 0 3.3241 | 1.7400 1.7400 0
20 2.8461 0.0012 0.2221 | 0.1196 5.1929 0 0.6532  0.9876 0.0082
494 | 29961 0.0586 0 0.5529 0 0.42339 0 0 0.5187
495 | 5.9059 0 0.0584 | 0.5488 0.8947 0 0.0017 0.0021 0.0001
496 | 0.1121 0 0.6613 | 0.5767 0.9899 0 0.8763 0 0.9827
497 1.1229  0.0095 0.0988 | 0.6499 5.8547 0 1.1317 1.1317 0.0012
498 | 0.6946 0.0101 0 0 5.8298 0.0320 | 1.0294 1.0294 0.0321
499 | 0.7353 0.0066 0.0384 0 5.7180 0.0330 | 0.7317 0.7317 0.0431
500 1.7509  0.0069 0.0283 | 0.4307 5.6133 0.0413 | 0.4826 0.4826 0.0783
501 2.1299  0.0077 0.0282 | 0.5043 5.6282 0.0308 | 0.4272 0.4272 0.0002
502 | 0.9778 0.0077 0.0255 | 0.2878 4.6543 0.0322 | 0.5239 0.5239 0.0098
503 | 0.9872 0 0 0.2909 4.5544 0.0411 | 1.4523 1.4523 0.0087
504 1.1329 0 0 0.3707 0 0.1128 | 2.4181 24181 0
505 1.9178 0 0 0.3812  1.3243  0.1724 | 49207 4.9207 0
1102 0 0.0331 0.0056 | 0.9297 3.9502 0 0.2853 1.8033 1.1355
1103 | 1.5077 0.0626 0.0332 | 1.1017 2.8221 0 0 0 1.4133
1104 0 0.0435 0.5821 | 0.1939 4.5585 0 0 0 1.1672
1105 0 0 1.52970 | 0.1922 3.2418 0.7273 | 0.2726 0.2726 0
1106 | 44476  0.323  0.5112 | 3.5487 3.8113 1.0179 | 0.3296 0.3296 0
1107 | 24312 0.0011 0.0435 | 0.2001 2.6026 0.9354 0 0 1.7245
1108 | 2.5079 0.1232  0.4542 | 0.3781 0 0.8825 | 0.1878 0.1878 0
1109 | 1.7828 0.0431 0.3210 | 0.4024 0 0.8812 0 0 1.3191
1110 | 1.2706 0.0056 1.1123 | 0.3252 0 0.8078 0 0 1.0233

The graph of the diffusion coefficient’s parameter for the decoupled dynamical system for y

without jump incorporated into the dynamical system are given below:
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Figure 27.: The graph of interaction coefficients 01 1 (17g, k), 01,2(M, k), 61,3(17k, k), 02,1 (g, k),

02,2(1, k), 02, 3(1k, k), 03,1 (1, k), 03.2(17, k), 63,3(17, k) (Without jump).

Figures 27 (a) — () show the graph of the e- sub-optimal interaction measure of fluctuation coefficient parameters
01,1 (T, k), 01,2(Mk, k), 61,3(Mk, k), 02,1 (Thi, k), 02,2(Mk, k) , 62,3(Mi, k), d3,1 (1, k), 03,2(1, k), d3,3(Mk, k),

respectively.

The following table gives the drift coefficient’s parameter estimates (i (7, k), 71,1 (M, k),
Y1,2(Mks k), v1,3 (Mg, k), Ba (1, k), v2,1 (e, k), v2,2 (1, ), 2,3 (s, k), B3 (g, k), vs,1 (Mg, k),
v3,2(M, k), and 3 3(1, k) for the dynamical system for p (without incorporating jump process

in the model describing the system p).
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Table 17: Estimates 1 (1, k), v1,1 (1w, k), y1,.2(mk, k), v1,3(1k, k), Ba(1hk, k), v2,1 (e, k),
Y2,2(M, k), v2,3(1k, k), B3(1g, k), v3,1 (1, ), 3.2(, k), v3,3(1, k) (Without jump).

tr Natural gas Crude oil Coal

B 1,1 V1,2 71,3 Ba Yo,1 V2,2 V2,3 B3 V3,1 V3.2 V3.3
11 0.3462  0.2579 -0.0039 0.0218 | 0.0029 0.0023 0.0056 0.0124 0 0 0.0432  0.0012
12 0.1681 0.3497 -0.0109 0.0248 0 0 0 0 0.6812 -0.3513  0.0248 0

13 0.1592  0.3755 -0.0102 0.0228 | -0.0490 0.0228 -0.0027 | 1.0795 -0.2904 0.0135 0
14 | -0.0889 0.5001 -0.0069 0.0257 | -0.3700 -0.1689
15 0.7025 0.6513 -0.0242 0.0376 | -0.0903 -0.1737

16 | 0.6727 0.6513 0.0188 -0.1048 | 0.3425 -0.1847

0.0633 | -0.6689 -0.1969 0.0166 0.0177
0.0477 | -0.8220 -0.0944 0.0061 0.0291
0.0252 | -0.0480 0.0694 -0.0112 0.0165
17 0.3253 0.3674 -0.0103 0.0140 | -0.4531 -0.1457 0 0.0638 | -3.6240 0.1086  0.0266 0.0569

(=R - =]

18 0.1523  0.3433 0.0014 -0.0163 | 4.0859 0.2320 0.3114 -0.2889 | -1.3277 -0.0566 0.0088 0.0353
19 | -7.9573 0.3433 -0.2058 1.1496 | 0.1389 -0.0677 0.0004 0.0065 | -0.9232 0.0368 -0.0277 0.0883
20 | 0.0514 0.3028 0.0041 -0.0192 | -0.1464 -0.0409 0.0004 0.0178 | -1.9138 0.0530 -0.0104 0.0836
495 | 0.0552 0.2994 0.0015 -0.0063 | 1.8435 -0.1608 0.1040 -0.0368 | 0.5815 -0.3597 -0.0050 0.0350
496 | 0.1799 0.1860 0.0004 -0.0067 | 1.5682 -0.0268 0.4723 -0.0502 | 0.8586 -0.2029 -0.0094 0.0241
497 | 0.8047 0.1923 0.0023 -0.0314 | 6.6699 -0.2655 0.4723 -0.1649 | 0.7191 -0.2061 -0.0053 0.0172
498 | 0.2742 0.2651 0.0020 -0.0145 | 1.0042 0.0088 0.0226 -0.0315 | 0.3978 -0.1680 -0.0034 0.0161
499 | 04915 02295 -0.0006 -0.0125 | 1.3074 0.3761 0.0073 -0.0872 | 0.1425 -0.1899 -0.0026 0.0224
500 | 0.5659 0.1618 0.0008 -0.0194 | 0.4040 -0.0889 0.0392 -0.0011 | 0.3674 -0.2313 -0.0073 0.0331
501 | 0.4498 0.1679 0.0010 -0.0167 | 0.4230 -0.1297 0.0434 0.0035 | -0.9002 1.1703 -0.0775 0.1011
502 | 0.4836 0.1850 -0.0001 -0.0139 | 0.5570 -0.1502 0.0384 0.0022 | -0.2313  0.6524 -0.0496 0.0663
503 | 0.4696 0.1850 0.1224 -0.0919 | -0.0441 0.0299 0.0384 -0.0023 | 3.7804 0.0120 -0.0498 0.0389
504 | -0.0456 0.1850 0.0088 -0.0270 | 0.6112 -0.0820 0.0425 -0.0080 | 6.4696 0.4005 -0.0950 0.0543
505 | 0.0464 1.7125 -0.0423 0.1339 | 0.7135 -0.1115 0.1135 -0.0082 | 2.2295 0.0897 -0.0357 0.0306

1102 | 0.6765 0.0455 -0.0020 -0.0908 | 0.2863 -0.2183 0.1891 0.1028 | 4.3927 3.8144 0.1072 0.0250
1103 | 1.1804 04214 -0.0149 0.0837 | -2.1858 0.4491 0.1891 0.1135 | -6.1960 0.7446  0.0261 0.0144
1104 | 0.1069 0.2489 -0.0009 -0.0014 | -2.1178 0.3406 0.1959 0.1826 | -6.4415 0.0339 -0.0037 0.1429
1105 | 0.2367 0.0128 0.0065 -0.0019 | 0.2633  0.0565 0.0742 -0.0997 | 0.6510 2.4930 0.0714 0.1429
1106 | 0.1178 0 0 -0.0014 | 0.1384 0.0784 0.2014 -0.0904 | 0.6510 2.4930 0.6341 0.1429
1107 | 0.1466 0.4648 -0.0002 -0.0271 | 0.5787 -0.0297 0.1305 -0.0979 | -4.5897 -0.0971 0.0240 0.0509
1108 | 0.3240 0.2478 0.1212 -0.0074 | 0.4293 -0.0678 0.0721 -0.0389 | -4.5961 -0.0734 0.0233  0.0507
1109 | 0.121 0 0 -0.0021 | 0.2282 -0.0468 0.0721 -0.0133 | -4.5961 -2.6776 0.5625 0.4702
1110 | 0.002 0 0 -0.0056 | 0.1523 0.0121 0.0011 -0.0129 | 9.5959 0.9045 -0.1478 0.0499

Table 17 shows the estimates of the parameters (1 (1, k), v1,1 (", k), Y1,2(1k, k), 71,3(1k, k), B2(1ik, k),
’yzyl(mk, /C), V2,2 (mk, k), ’)/2,3(7?1}@7 k), 53(7711@, k), ’)/3,1(7”77,1“, k), V3,2 (mk, k), V3,3 (mk, k) at the e- sub—optimal size

my and time ¢, for each of the energy commodity data sets. Moreover, p < r, and the initial real data time is ¢, = t10.
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Figure 28.: The graph of interaction coefficients y; 1 (7, k), v1,2(M, k), 1,3(7, k), 2,1 (g, k),

Y2,2(10s k) 5 y2,3(1, k), v3,1 (M, k), 3,2 (17, k), v3,3(1, k) (without jump).

Figures 28 (a) — () show the graph of the e- sub-optimal interaction coefficient parameters v1,1 (M, k), y1,2 (1, k),
v1,3 (M, k), y2,1 (Mg, k), Yo,2 (Mg, k) 5 ¥2,3(k, k), v3,1 (M, k), v3,2 (10, k), 73,3(17k, k) without jump. According
to (9.47), the estimate v, ; (", k), j # I, is positive if commodity p; is cooperating with commodity p;, and negative if
commodity p; is competing with commodity p;. There is no interaction between the two commodities if v;,; (i, k) = 0.
It is apparent from the graph of 1 3 (77, k) that coal and natural gas are competing and cooperating depending on the time
period. It is also apparent graph of 71 2 (7, k) that natural gas and crude oil are also either cooperating or competing,

depending on the time period.

The next figure shows the graph of the parameter estimates (31 (1, k), B2(myg, k) and B3 (my, k)

in the drift coefficient of the model describing the system p.
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Figure 29.: The graph of 1 (1, k), S2(m, k) and B3 (1, k) for Natural gas, Crude oil and Coal,

respectively (without jump).

Figures 29: (a), (b) and (c) are the graphs of 31 (77, k), B2 (1, k) and B3 (1w, k) against time ¢y, for the daily Henry
Hub natural gas price data set [27], daily crude oil price data set [28], and daily coal price data set, respectively (without

jump).
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Table 18: Estimates 0'1,1(7”7”%, k‘), Ulyg(mk, k:), 0'173(7”7’%, /{3), 0'271(7?7/]9, k‘), Ugyg(mk, kj), 0'273(7”71,%, k‘),

0'371(7‘hk, k), Ug,g(mk, k), 0'373(7?1]4, k) (Withoutjump).

tk Natural gas Crude oil Coal
01,1 01,2 01,3 02,1 02,2 02,3 03,1 03,2 033
11 0 0 0 0 0 0 0 0 0
12 | 0.0485 0.0004 0.0032 | 0.2734 0.0166 0 0 0 0.0000
13 0 0 0 0 0 0 0 0 0
14 | 0.2120 0.1386 0.0133 | 1.2573 0.4773 0.1195 0 0.0665 0.0086
15 | 04246 0.1318 0.0021 | 2.1081 0.4894 0.1211 0 0.6107 0.0696
16 | 0.5538 0.0778 0.1501 0 0.2524 0.0811 | 0.0651 0.4251 0.0635
17 | 1.1121 0.0469 0.2230 0 0.1848 0.2463 0 0.4458 0.0478
18 | 1.5347 0.0180 0.2178 0 0.1877 0.1602 | 0.5681 0.0592 0.0115
19 | 1.1315 0.0619 0.2221 0 0.2673  0.2465 | 0.4999 0.0569 0.0127
20 | 2.0845 0.0536 0.1866 0 0.1700 0.0781 | 0.3789 0.3174 0.0046
495 0 0.0036 0.0406 | 0.2286 0.0600 0.0172 0 0.9387 0.0182
496 | 0.1588 0.0035 0.0107 | 1.4847 0.3163 0.0102 0 0 0.0016
497 | 0.1551 0.0009 0.0065 0 0.1453 0 0.7777 0 0.0033
498 | 0.1576 0.0011 0.0073 0 0.1679 0 0.5334 0 0.0060
499 | 0.1197 0.0006 0.0059 | 1.9414 0.2391 0.0172 | 0.4405 0.1432 0.0097
500 | 0.3600 0.0001 0.0049 | 1.9554 0.3960 0.0079 | 0.6331 0.1410 0.0093
501 | 0.0514 0.0033 0.0049 | 2.0436 0.3499 0.0111 | 0.7690 0.1376 0.0089
502 | 0.2503 0.0034 0.0042 | 2.0837 0.1744 0.0132 | 0.6198 0.1274 0.0066
503 | 0.1195 0.0147 0.0165 0 0.4283 0.0060 | 1.1613 0.1530 0.0049
504 | 0.0974 0.0144 0.0027 0 0.2241 0.0048 | 0.4778 0.0574 0.0043
505 | 0.1422 0.0060 0.0131 0 0.2023  0.0054 | 0.5604 0.0669 0.0004
1102 | 0.1898 0.0016 0.0413 | 0.8313 0.0767 0.0381 | 0.6875 0 0.1451
1103 | 0.2094 0.0015 0.0352 | 0.8262 0.0673 0.0451 | 0.7298 0.2808 0.0147
1104 | 0.1711 0.0011 0.0040 | 0.6648 0.0915 0.0462 | 0.5563 0.1831 0.0105
1105 | 0.1816 0.0012 0.0116 | 0.6658 0.1049 0.0371 | 0.6591 0.2874 0.0057
1106 | 0.1191 0.0011 0.0116 | 0.6260 0.1155 0.0393 0 0.0196  0.0060
1107 | 0.0417 0.0012 0.0041 | 0.4992 0.0781 0.0382 0 0 0.0065
1108 | 0.1058 0.0033 0.0045 | 0.0019 0.0589 0.0421 0 0 0.0018
1109 | 0.1740 0.0021 0 0 0.0446 0.0316 | 2.1187 0 0.4511
1110 | 0.2912 0.0021 0.0163 | 0.0385 0.0342 0.0037 0 1.1563 0.0257
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Table 18 gives the e-sub-optimal estimates of the parameters o1,1(7hg, k), o1,2(Thi, k), 01,31, k), 02,1 (Thi, k),

02,2(k, k), 02,3(1k, k), 03,1 (1, k), 03,2(Mk, k), 03,3(17k, k) for each of the energy commodity data sets.
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o2,3(k, k), 031y, k), 032(mg, k), o1,1(1, k) for Natural gas, Crude oil and Coal, respec-

tively (without jump).

Figures 30: (a), (b) and (c) are the graphs of 01,1 (", k), o1,2(1k, k), o1,3(Mk, k), 02,1 (1, k), o2,2(k, k),

02,3(Thi, k), 03,1 (M, k), 03,2(Mk, k), 01,1 (17, k) against time ¢, for the daily Henry Hub natural gas price data set

[27], daily crude oil price data set [28], and daily coal price data set, respectively.
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Table 19: Real and simulated estimates (without jump) for Natural gas, Crude oil, and Coal.

tr Natural gas Crude oil Coal

Real  Simulated p} Real Simulated p5 | Real  Simulated p3

11 | 4.0200 4.0500 58.9900 56.5200 16.5900 16.8000
12 | 3.9900 4.0500 59.5200 59.3099 17.4600 16.8635
13 | 3.7500 3.6690 61.4500 59.3377 17.8900 17.8086
14 | 3.7700 3.6341 60.4900 59.4191 17.5500 17.0859
15 | 3.4100 3.3967 61.1500 59.6974 17.4100 17.0859
16 | 3.3500 3.3967 62.4800 59.6974 16.7500 17.0859
17 | 3.4900 3.4537 63.4100 61.2177 17.6600 19.0677
18 | 3.5500 3.4537 65.0900 61.4561 17.5200 16.0578
19 | 3.9200 3.8618 66.3100 61.6529 18.5000 19.0677
20 | 3.8600 3.8618 68.5900 60.9364 19.0600 19.0677

495 | 4.1900 4.0368 107.1800 104.1295 32.7600 31.3108
496 | 4.3300 4.1868 110.8400 111.1245 33.6500 32.7737
497 | 4.3300 4.1025 111.7200 112.4675 33.7100 33.4888
498 | 4.3700 4.0964 111.6800 110.8795 34.7500 35.5907
499 | 4.3200 4.1042 111.7200 104.2465 34.5400 32.9391
500 | 4.3500 4.0548 112.3100 109.9535 34.0400 36.2674
501 | 4.3800 4.0548 112.3800 109.9995 33.1000 36.2674
502 | 4.5100 4.3249 113.3900 104.3254 33.6700 34.8915
503 | 4.6000 4.3555 113.0300 113.2356 33.9400 35.0472
504 | 4.6000 4.3491 110.6000 103.9435 33.8300 32.8992
505 | 4.5900 4.3609 108.7900 104.9995 32.0200 32.8992

1102 | 3.7200 3.5963 108.2300 110.5149 4.7700 2.8861
1103 | 3.7300 3.5963 106.2600 105.8076 5.0100 5.6871
1104 | 3.6800 3.4099 104.7000 105.8076 4.9800 5.3821
1105 | 3.6600 3.4356 103.6200 105.8076 4.7300 4.9221
1106 | 3.5900 3.4636 103.2200 106.9547 4.6800 4.2352
1107 | 3.5200 3.2573 102.6800 105.4047 4.6300 5.8172
1108 | 3.4900 2.8981 103.1000 102.4928 4.7400 6.0376
1109 | 3.5100 2.8981 102.8600 102.4928 4.3300 5.1121
1110 | 3.4800 3.0267 102.3600 102.4928 4.1800 4.8978

Table 19 shows the Real and simulated estimates for the spot price processes p;(t), j € I(1, 3) corresponding to the

natural gas, crude oil and coal prices.
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The next figure shows the graph of the real and simulated prices for Natural gas, Crude oil, and

Coal data set.
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Figure 31.: Real and Simulated Prices (without jump) for Natural gas, Crude oil, and Coal.

Figures 31: (a), (b), and (c) show the graph of the Real and Simulated Spot Prices for the daily Henry Hub natural
gas data set [27], daily crude oil data set [28], and daily coal data set [26], respectively. The red line represents the real
data set p(tx), while the blue line represent the simulated data set p° (7w, k). Here, we begin by using a starting delay
of r = 10. The simulation starts from ¢,. = ¢10. The spikes in the graph is as a result of jump. The estimates at the jump
times are not fitted properly. To reduce magnitude of error, we increase the magnitude of time delay. We later compare

this result with the case where jump is incorporated into the system.

10.6.2 Relationship between Natural Gas, Crude Qil and Coal: With Jump Incorporated.

In this subsubsection, we analyze the relationship between Natural Gas, Crude Oil, and Coal with
the jump process. Here, we apply the above conceptual computational algorithm in Section 10 for

the real time data sets namely daily Henry Hub Natural gas data set, daily crude oil data set, and
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daily coal data set for the period of 05/04/2009 — 01/03/2014, [26, 27, 28]. Fori € I(1,K*),
K #£0,weuse At;_1 = 1;¢ =0.001; r;_1 = 10 and d;_1 = 2. The e— level sub-optimal estimates
of the parameters at each real data times are described below for each commodity data sets. We also
note that there are K = 15 jumps in the system.

The parameters corresponding to the model governing natural gas price data set are uzl ! (g, k),

i_l(mi_l,ti_l) Rzl 11(mi_1,ti_1), ﬁzl 5 (mi_l,ti_l) K,Zl 31(mi_1,ti_1) ,yi 11( A i—1 tz 1)

)

A O A ), S Y, S O ), o i ),
ai e, o 21(7?12*1,75’*1) 71( ~1,#71). The parameters correspondmg to the model
governing crude oil price data set are u~ ( th), By (” L, /i; (. ! St D,
“1221(77”‘2 ' tz_l) H%sl(m;c ' tz_1> 721 ( tl 1) 722 (w ' tz 1) ’Yz,_g (AZ ' tl b,

5 (A’L 1 tz 1) 5 (Az 1 tz 1) 5 (Az 1 tz 1) O'; ll(m;;l,tzil),O'é;l(mzil,tzil),

a% 31 (rh“l, t’fl), while the parameters corresponding to the model governing coal price data set

are ug 1( A~ d—1 tz 1>, g_l(mi_l,ti_l), Kg 11(mi—1’ti—1)’ :‘ig 21(mi—1’ti—1)’ :‘ig Sl(mi_lati;_l)’
731(A11t1 1) 732(Azltz 1) /733(Azltz 1)5 (Azltz 1)5 (Azltz—)
5 ( ~i—1 tz 1) Ué 11(7?1;;1,75271) 0';, 21 (mzfl,t;ﬁfl) O_é 31 (m;;l, t;;l).

For the sake of simplicity and in order to be able to compare our results in this subsection with the

results in subsection 10.6.1, for each j,1 € I(1,n), we re-write the parameters u; Yot e,
Lniml 4i—1 1 1 -1 si—1 el S i1 i—1 (i1 4i—1
ﬂl (Mt ), K ;l (M 1t h, 7]1 Yt e, 5 i), and U;',l LT af-

(g
ter they have been estimated as w; (g, k), (g, k), Iﬁj,l(mk,k), Y (M, k), 85(1h, k), and
UjJ(?’ArLk, k‘)

First, we give results for the jump times of the system {7} },. I(1,K*)-

Table 20: Result for the jump times of the system (y, p)

T |17 | 44 | 61 | 87 | 157 | 200 | 422 | 464 | 483 | 502 | 722 | 754 | 870 | 930 | 1113

Table 20 shows the result for the jump times of the system (y, p). These results are derived by recording the times at
which an entry of a commodity differ by twice the standard deviation or more from the mean of that commodity. These

times are now combined into a single array and sorted out in an increasing order. It follows from Table 20 that K = 15.

We give the estimate of the jump coefficient matrices IT° and ©° defined in (9.23) in the following

table.
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Table 21: Estimates ﬂ'li, 77%, Wg, 9%, 9%, and Gg.

T; Natural gas | Crude oil | Coal T; Natural gas | Crude oil | Coal

i | T I} 11} 1T T; 0 0% 0%

1 17 1.0031 1.1219 | 1.0256 17 1.0049 1.1219 | 1.0493
2 44 0.9213 0.9727 | 1.0410 44 0.9352 1.0084 | 0.9249
3 61 0.9482 0.9671 | 0.9661 61 0.9997 0.9427 | 0.9404
4 87 0.8859 0.9974 | 0.9653 87 0.7389 1.0452 | 0.9905
5 | 157 1.0435 0.9350 | 1.0432 157 1.0933 1.0019 | 1.0049
6 | 200 1.0309 1.0199 | 1.0382 200 0.9826 1.0210 | 0.9794
7| 422 1.0270 0.9775 | 0.9669 422 0.9706 0.9939 | 0.9917
8 | 464 0.9581 1.0462 | 1.0523 464 1.0128 1.0508 | 1.0324
9 | 483 0.9765 0.9787 | 1.0291 483 1.0382 1.0328 | 1.0246
10 | 502 1.0532 1.0737 | 1.0136 502 1.0359 1.0073 | 1.0162
11 | 722 0.9812 0.9959 | 0.9919 722 0.9700 0.9695 | 1.0011
12 | 754 1.0003 1.0009 | 0.9189 754 1.0137 0.9987 | 1.3481
13 | 870 1.0579 0.9921 | 1.1378 870 1.0328 1.0033 | 1.1420
14 1 930 1.0275 0.9907 | 0.9978 930 0.9995 0.9812 | 1.1848
15 | 1113 1.0009 0.9960 | 1.0706 1113 0.9304 0.9801 | 0.9897

The following table gives the drift coefficient’s parameter estimates w1 (7, k), 1,1(mu, k),

K1,2(Mg, k), £1,3(M, k), uz (Mg, k), k2,1 (M, k), k2,2, k), k2,3(1, k), uz (g, k), k3,1 (1, k),

k3 2(M, k), k3 3(Mg, k) for the decoupled dynamical system for y with jump.
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Table 22: Estimates mk, U1 (Thk, k‘), I{l’l(mk, k), K1,2 (Thk, k‘), K1,3 (mk, k‘), U (mk, k), IQQJ(Thk, k‘),

k2,2(1k, k), k2,3(1, k), us(mi, k), k31 (M, k), k3 2(m, k), k3 3(Mg, k) (with jump).

tr Natural gas Crude oil Coal
My, uy K1,1 K12 K13 ug ko1 (g, k) K22 K23 | ug(ha, k) K3 K32 K33
x10716  x10716 x10716 x10716 %1016 x10716

11 1 | 4.1593 0 0 0 57.7000 0 0 0 16.7407 0 0 0

12 4 | 4.2000 0 0 0 58.6313 0.0011 0.0310 -0.0012 16.2395 0 0 -0.0376
13 6 | 4.0616 0.0679 -0.0054 -0.0035 | 58.5378 -0.0035 0.0205  0.0032 16.2680 0 0 0.1069
14 2 | 4.0616 -0.0242 -0.0179 -0.0035 | 61.4809 0.0020 0.0098 0 15.5249 0 0 -0.0294
15 7 |4.0910 0.6416 -0.2898 0.0078 | 22.5758 -0.0057 0.0085  0.0012 18.7073 0.0009 -0.0021 0.0318
16 4 | 4.0160 0 0 0.0078 59.6867 -0.0051 0.0080 0 17.0060 0 -0.0021 0

17 2 | 49575 0 0 0.0078 60.3710 -0.0005 0.0207 0 12.8918  -0.0005 -0.0002 0.0318
18 8 | 49575 -0.1947 0 0.0078 62.3437 0.0005 -0.0008 0 16.5954 0.0002  0.0008 0.0662
19 4 | 33190 -0.4472 0.6760 0.0078 74.6911 -0.0008 -0.0019 0 17.9932 0 -0.0002 0
20 1 | 3.4762 -0.2540 -0.0048 0.0078 65.9190 0.0026 -0.0006 1 17.6485 0 0 0.0499
494 1 | 4.1457 0 0 -0.0001 | 115.1875 0.0002 0.0053 0 33.3359 0.0003  -0.0003  0.0326
495 1 | 42877 0.1184 -0.0014 0 124.5218 0.0008 0.0056 0 30.1732 0.0002 -0 0.0412

496 1 |42238 0.2582 0.0011  0.0003 | 106.8349 0.0003 0.0113  -0.0006 | 34.9907  0.0034 0 0.0097
497 5 |4.0998 0.0477 -0.0006 -0.0002 | 108.4725 -0.0003 0.0162 -0.0033 | 33.3388  0.0002 0 0.0443
8

498 4.0592 0.0201  0.0010 0 104.8926 0 0 0.0003 35.1174 0 0.0001  0.0207
499 1 | 43433 02118 -0.0014 0 109.2551 -0.0002 0.0048  0.0003 33.2862  0.0010  0.0001  0.0068
500 | 4 | 24519 0 0 0 111.7067 0 0 0 36.1647  0.0003  0.0003  0.0079
501 1 | 42415 0.4108 0 -0.0015 | 110.7517 -0.0006 0.0026  0.0009 | 34.9145 -0.0001 -0.0004 0.0407
502 | 2 | 43633 03210 0.0002 -0.0001 | 103.6326 -0.0019 0.0023  -0.0002 | 34.8337  -0.0001 -0.0001 0.0140
503 | 2 | 42911 0.1276  0.0003  0.0043 | 112.1547 -0.0033 0.0030  0.0027 | 35.8389  0.0005 0.0001 0.0211
504 | 7 | 45942 -0.0125 -0.0002 -0.0031 | 111.1278 0.0010 0.0072  0.0006 | 33.6875  -0.0021 0 0.0268
505 | 2 | 3.1882 0.0666  0.0009 0 106.1919 -0.0009 0.0110  0.0011 33.6640  -0.0011 -0.0002  0.0231
1102 | 1 | 3.5909 0 0 0.0008 | 110.3777 0.0006 0.0045 0 5.1761 0.0067  -0.0029 -0.0044
1103 | 6 |3.5303 0.1166 0.0002 -0.0003 | 111.1585 -0.0003 0.0083 0 5.4558 -0.0019  0.0014  0.0600
1104 | 4 | 3.5314 0.0809 0.0018 0 109.0996 -0.0007 0.0095  0.0013 4.8000 0.0005  0.0006  0.1742

1105 | 1 | 3.7100 0.2234 -0.0013 -0.0015 | 106.5667 0.0033 0.0073  -0.0020 5.4226 -0.0082  0.0020  0.0932

1106 | 8 | 3.4084 0.1098  0.0001 0 106.5989 0.0003 0.0030  0.0023 5.3360 -0.0023  0.0005  0.0956
1107 | 7 |3.5520 0.1086 0.0001 -0.0070 | 103.4473 -0.0020 0.0037  -0.0045 4.3586 -0.0005  0.0004 0.1418
1108 | 5 |3.9233 0.0601 0.0007 0 102.8550 0 0.0040 0 4.6582 -0.0010 0 0.1388
1109 | 8 | 3.5328 0.0417 0 0 103 -0.0002 0.0089  -0.0005 4.9663 -0.0019  0.0008  0.1279
1110 | 5 | 3.8399 0.0212 0.0004 0 102.8800 0 0 0 4.7286 -0.0037  -0.0030  0.0740

The following figures show the parameter estimates w1 (1, k), us (1, k), and ug(my, k) for the

decoupled dynamical system for y with jump.

171



L@ | (b)
120
Gl ol
100
5L 4
a0+
= A 7 B
B0
3 ol
40
2 1l
1 o 20
o L L L L L 0 L L L L L
0 200 400 600 a0n 1000 1200 0 200 400 500 800 1000 1200
time t, (days) time t, (days)
U
B0 T
(c)
a0+ Bl
a0+ -
4 30r q
20 q
10 o
o . . L L L
0] 200 400 =] 800 1000 1200
time t, (days)

Figure 32.: The graph of mean level uj(my, k), ua (1, k) and us(my, k) for Natural gas, Crude

oil and Coal, respectively (with jump).

Figures 32: (a), (b) and (c) are the graphs of uq (g, k), uz(7hi, k), and us(rk, k) against time ¢, for the daily
Henry Hub natural gas price data set [27], daily crude oil price data set [28], and daily coal price data set, respectively.
By plotting the real data sets (shown in Figure 38, it is easily seen that the graphs of w1 (M, k), u2 (i, k) and us (1, k)
are similar to the graph of the Henry Hub Natural gas, Crude Oil, and Coal data set, respectively. We expect this to happen

because u;, j € I(1,3) are the equilibrium spot price processes described in (9.3).

The graph of the interaction parameters x1 1 (1, k), £1.2(1, k), £1,3(1u, k), K21 (10, k),
/@272('fnk, /ﬂ), Iﬁ?zg(ﬁlk, k), H3’1(mk, k‘), /ﬁg,g(mk, k), and 53,3(7”71;.3, k) for the decoupled dynamical

system for y with jump and estimates in Table 22 are given below:
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Figure 33.: The graph of interaction coefficients ri1(7, k), k120, k), Ki13(Mg, k),

ka,1 (M, k), k22(Mg, k), k2,3(M, k), k3,1 (1, k), K3.2(10, k), K3,3(10, k) (With jump).

Figures 33 (a) — (i) show the graph of the e- sub-optimal interaction coefficient parameters x1,1 (7, k), <1,2 (1K, k),
KR1,3 (T?Lk, k), Hg,l(mk, k), K22 (mk, k) , K23 (mk, k), Ii371(1“hk, k), Ii3,2(mk, k), R3,3 (T?Lk, k) The interaction coeffi-
cients k1, j # 1 are negligible, because each estimate is << 107'®. Thus, this shows that the model describing the

mean spot price, y;, is mainly characterized by the market potential /{;fjl (u;fl —y;)yij€I1(1,m),i € I(1,K").

The table below shows the estimates of the diffussion coefficient’s parameters for y.
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Table 23: Estimates 5171(7?%, /{3), 5172(1’?%, /{3), (5173(7?1]@, k:), 5271(7?%, k‘), 52’2(7”7”&,14;, k‘), (5273(7”71,1€7 k‘),

93,1 (M, k), 63.2(M, k), 03 3(11, k) (with jump).

tr Natural gas Crude oil Coal
01,1 012 013 02,1 02,2 02,3 031 032 03,3

11 0.0062 0.0010 0.0001 | 1.5277 0.0078 0.0011 0 0 0.0218
12 | 0.0182 0.9002 0 1.6227 0.0010 0 0 0 0.0988
13 | 0.0239 0.0802 1.7280 0 1.7694 0 0.6374 0.6374 0.0959
14 0 0.0001 0.6027 | 2.3258 0 0 1.6564 1.6564 0.0847
15 0 0.8001 0.6210 | 2.3252 0 0 1.6650 1.6650 0.0111
16 | 0.0455 0.0007 3.6877 | 2.3217 0 1.2215 | 1.6724 1.6724 0

17 0 0.9876 0 1.6425 0 0 1.7719 1.7719 0

18 | 3.0410 0.9351 0 1.3105 0 0.1070 | 1.7630 1.7630 0.0434
19 | 27713 0.6680 0 1.1052 0 0 1.7400 1.7400 0
20 | 2.8461 1.7795 0 0.1196 0 0.0983 0 0.4555 0

495 | 1.1229 0 0.0584 | 0.5488 0.1104 0.0761 0 0 1.3987
496 | 0.6946 0 0.6613 | 0.5767 0.0715 0.0610 0 0 1.3017
497 | 1.1229 0.0095 0.0988 | 0.6499 0.0870 0.0633 | 1.1317 1.1317 1.3069
498 | 0.6946 0.0101 0 0 0 0.0320 | 1.0294 1.0294 1.5410
499 | 0.7353 0.0066 0.0384 0 0.0922 0.0330 | 0.7317 0.7317 1.2225
500 | 1.7509 0.0069 0.0283 | 0.4307 0.4545 0.0413 | 0.4826 0.4826 1.2254
501 | 2.1299 0.0077 0.0282 | 0.5043 0.7873 0.0308 | 0.4272 0.4272 1.5587

502 | 09778 0.0077 0 0.2878 0 0 0.5239 0.5239 1.8713
503 | 0.9872 0 0 0.2909 0 0 1.4523 1.4523 1.8874
504 | 1.1329 0 0 0.3707 0.4261 0 0 0 0
505 | 1.9178 0 0 03812 0.7292 0.1724 0 0 0
1102 0 0.0331 0.7183 | 0.9297 0.0434 0.0680 0 0 1.1355
1103 | 1.5077 0.0626 0.2048 | 1.1017 0.0421 0.1510 0 0 1.4133

1104 | 0.4444 0.0435 0.4622 | 0.1939 0.1078 0 0.0814 0 1.1672
1105 | 3.5933 0 0.3646 | 0.1922 0 0.7273 | 0.2726  0.2726 1.3023

1106 | 2.4964 0 0.3919 0 0.0684 1.0179 | 0.3296 0.3296 1.4111
1107 | 2.4600 0 0.8995 | 0.2001 0.1510 0.9354 0 0 1.7245
1108 | 2.0262 0 0.6325 | 0.3781 0.0814 0.8825 | 0.1878 0.1878 1.0915
1109 | 1.7828 0 0.6116 | 0.4024 0.0332 0.8812 0 0 1.3191
1110 | 1.2706 0 0.1001 | 0.3252 0.0155 0.8078 0 0 1.0233

The graph of the diffusion coefficient’s parameter for the decoupled dynamical system for y with

jump are given below:
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Figure 34.: The graph of interaction coefficients 01 1 (17g, k), 01,2(M, k), 61,3(10k, k), 02,1 (g, k),

S2.0(1g, k) 5 62,3 (Mg, k), 03,1 (17, k), 03.2(Mk, k), 633 (1h, k) (with jump).

Figures 34 (a) — () show the graph of the e- sub-optimal interaction measure of fluctuation coefficient parameters

01,1(M, k), 01,2(Mu, k), 61,31, k), 02,1 (T, k), 02,2 (T, k) , 62,3(Thi, k), 03,1 (17, k), 03,2(17u, k), d3,3(Mk, k).

The following table gives the drift coefficient’s parameter estimates [ (v, k), 71,1 (7w, k),

Y1,2(M, k), y1.3(Mg, k), Ba (i, k), v2,1 (Mg, k), v2,2(Mk, k), y2.3(Mg, k), B3 (i, k), v3.1 (Mg, k),

v3,2(M, k), and 3 3(1y, k) for the dynamical system for p with jump.
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Table 24: Estimates ﬁl(mk)k)a 71,1(mk,k)a ’71,2(mk7k)a 71,3(mkak;)’ B2(mkvk)e VQ,l(mkak)’
Y2,2(Mk, k), v2,3(1k, k), B3(1k, k), v3,1 (1, k), y3.2(, k), v3,3(11, k) (With jump).

tr Natural gas Crude oil Coal
b1 M1 M2 73 B2 Y21(e, k) 22 72,3 B3 V3.1 V3,2 73,3
11 0 0 0 0 0 0 0 0 0 0 0 0

12 | 0.1681 0.3497 -0.0109 0.0248 | -0.4815 0.1626 -0.4066 -0.0123 | 0.7665 -0.3259 0.0205 -0.0198
13 0.1592 03755 -0.0102 0.0228 | -0.7778 -0.5752 -0.0578 0.1870 | 1.0795 -0.2904 0.0135 -0.0217
14 | 7.3439 03755 0.0488 -0.5478 | 1.7680 -0.5555 -0.2058  0.0291 | 0.8543 -0.2056 0.0034 -0.0064
15 03336 03652 -0.0127 0.0213 | -0.8999 0.0601 -0.1110  0.0405 | 0.5144 -0.1264 -0.0062 0.0127
16 | 04709 0.2780 -0.0116 0.0104 | -0.8999 0.0601 -0.1110 -0.0292 | 0.0017  -0.0002 0 0

17 0.3277 0.2780 0.0768 -0.2633 | 1.3349 0.0027 -0.0330 -0.0750 | -0.6285 -0.0569 0.0016  0.0262
18 0.3277 13156 -0.1491 -0.1646 | 1.5419 -0.0088 0.1205 -0.0892 | -1.3275 -0.0703 0.0080  0.0386
19 0 0 0 0 -0.1785 -0.0368 -0.0062  0.0189 | -0.8091 -0.0001 -0.0083  0.0466
20 | 0.6985 0.4990 -0.0069 -0.0187 | -0.1513 -0.0778 -0.0096  0.0255 | -0.0182  0.0080  0.0001  0.0003

495 | 0.1201 0.2264 0.0007 -0.0056 | 0.2756 0.1131 -0.9587 -0.0087 | -0.0288 -0.0780 -0.0019 0.0136
496 | 0.1809 0.2085 0.0009 -0.0082 | 0.2898 -0.0431 0.7329 -0.0133 | 0.1324 -0.1434 -0.0018 0.0158
497 | 0.2442  0.1597  0.0007 -0.0093 | 3.1030 -0.0495 -0.0462 -0.0862 | 0.9772 -0.2426 -0.0065 0.0177
498 | 0.2742  0.2651 0.0020 -0.0145 | 1.3147 0.0148 -0.0009 -0.0411 | 0.2770 -0.1888 -0.0037 0.0217
499 | 0.3320 0.3298 -0.0009 -0.0070 | 0.8430 0.0070 0.0283  -0.0265 | 0.0931 -0.1551 -0.0041 0.0237
500 | 0.5035 0.2337 -0.0007 -0.0128 | 1.3320 0.3949 -0.3308 -0.0838 | 0.4175 -0.2331 -0.0034 0.0222
501 | 0.6328 0.2612 -0.0034 -0.0077 | 0.3251 -0.1148 0.0548 0.0042 | 0.7896 -0.2546 -0.0093 0.0305
502 | 0.5403 0.2457 -0.0014 -0.0113 | 0.4863 -0.1315 0.0343  0.0020 | 3.7990 0.0420 -0.0524 0.0421
503 | 04794 0.2098 -0.0028 -0.0050 | 0.1239 0.0013 0.0202 -0.0040 | 9.6735 0.0736 -0.1152  0.0648
504 | -0.3308 -0.5600 0.0258 -0.0737 | 0.2867 -0.0391 0.0009 -0.0034 | 4.2547 0.3506 -0.0669 0.0382
505 | 1.1680 0.8346 -0.0274 0.0542 | 0.1198 -0.0588 -0.3412  0.0092 | 2.2295 0.0897 -0.0357 0.0306

1102 | 0.6765 0.0455 -0.0020 -0.0908 | 0.4026 -0.2544 0.2045  0.1058 | -5.9294 0.6777 0.0292  0.0068
1103 | 1.1804 0.4214 -0.0149 0.0837 | -0.6549 0.1780 0.0070  0.0018 | -6.3380 0.7440 0.0291  0.0106
1104 | 0.1069 0.2489 -0.0009 -0.0014 | -2.1178 0.3406 0.1959  0.1826 | -3.8701 0.5681  0.0157  0.0021
1105 | 0.0139 02777 -0.0001 -0.0008 | 0.3958 -0.0274 0.0642 -0.0620 | -4.0701  0.1880  0.0091  0.0514
1106 | -0.2513  0.4043  0.0031 -0.0164 | 0.4097 0.0060 0.1536  -0.0907 | -5.0668 0.3261  0.0178  0.0419
1107 | 0.0670 0.3163 -0 -0.0145 | 0.2906 0.0485 0.2310 -0.0989 | -5.0668 0.4016 0.0308  0.1474
1108 | 1.0112 0.6861 -0.0091 -0.0107 | 0.4281 0.0048 0.1337 -0.0933 | -5.0668 0.4650 0.0304 0.1295
1109 | 0.5020 0.5370 -0.0030 -0.0375 | 0.3645 -0.0168 0.1078 -0.0641 | -5.0668 0.4156 0.0311  0.1396
1110 | 0.1420 03295 0.0009 -0.0484 | 0.1728 -0.0189 -0.0164 -0.0230 | -6.6650 0.4509  0.0099  0.0831

Table 24 shows the estimates of the parameters 77,51 (Thi, k), v1,1 (Mg, k), y1,2 (Mk, k), y1,3 (1, k), ik, B2 (g, k),
ngl(mk, k), 72,2(75%, k), ’ygyg(’nﬁlk, k’), mk,ﬁg(mk7 k’), ’}/3’1(7?1,1@, k), 73,2(7’Ank, k), 73,3(?7%1“, k), for each of the energy
commodity data sets. According to (9.47), the estimate v;; (1, k), j # [, is positive if commodity p; is cooperating

with commodity p;, and negative if commodity p; is competing with commodity p;. There is no interaction between the
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two commodities if y; ; (M, k) = 0. It is apparent from the graph (from 1 3 (M, k) in Column 6) that coal is competing

with natural gas during this period because the estimates of v1,3(1, k) are mostly negative. It is apparent that natural

gas and crude oil are either cooperating or competing, depending on the time period.

In the following, the graph of the drift coefficient’s parameters with estimates in Table 24 are

given below:
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Figure 35.: The graph of interaction coefficients y; 1 (1, k), v1,2(, k), v1,3(7, k), 2,1 (g, k),

Y2,2(10s k) 5 y2,3(m, k), v3,1 (1, k), 3,2 (170, ), ¥3,3(1, k) (with jump).

Figures 35 (a) — (¢) show the graph of the e- sub-optimal interaction coefficient parameters v1,1 (Mg, k), y1,2 (1, k),
Y1,3 (T, k), v2,1 (T, k), Y2,2(Mk, k) 5 v2,3(Thi, k), v3,1 (T, k), v3,2 (T, k), v3,3 (e, k). According to (9.47), the
estimate 7, ; (7w, k), § # L, is positive if commodity p; is cooperating with commodity p;, and negative if commodity p;
is competing with commodity p;. There is no interaction between the two commodities if 7;; (7, k) = 0. It is apparent
from the graph of v1,3(7, k) that coal is competing with natural gas because the estimates of v1,3(7k, k) are mostly
negative. Also, it is apparent that natural gas and crude oil are either cooperating or competing, depending on the time

period.
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Figure 36.: The graph of mean level 31 (1, k), B2 (g, k) and B3 (g, k) (with jump).

Figures 36: (a), (b) and (c) are the graphs of 31 (1w, k), B2(mu, k), and Bz (i, k) against time ¢ for the daily

Henry Hub natural gas price, [27] daily crude oil price [28], and daily coal price data set, respectively.
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Table 25: Estimates 0'1,1(7”71]6, k‘), Ulyg(mk, k:), 0'173(7”7’%, /{3), 0'271(7?7/]9, k‘), Ugyg(mk, kj), 0'273(7”71,%, k‘),

031 (1, k), o321, k), 03 3(my, k) (with jump).

173 Natural gas Crude oil Coal

o1,1 01,2 01,3 02,1 02,2 02,3 03,1 03,2 033
11 0 0 0 0 0 0 0 0.1303 0
12 0.0485 0.0004 0.0032 | 0.2734 0.0166 0 0.0513 0 0.0000
13 0.7333 0 0 0.9445 0 0 0.2489 0 0

14 0.2120 0.1386 0.0133 | 0.3877 0.4773 0.1195 | 0.1365 0.0665 0.0086
15 0.4246 0.1318 0.0021 | 0.03341 0.4894 0.1211 | 0.0112 0.6107 0.0696
16 0.5538 0.0778 0.1501 | 0.07751 0.2524 0.0811 | 0.0651 0.4251 0.0635
17 0.3907 0.0469 0.2230 | 0.08746 0.1848 0.2463 0 0.4458 0.0478
18 0.3523 0.0180 0.2178 | 0.04291 0.1877 0.1602 | 0.5681 0.0592 0.0115
19 0.5116  0.0619 0.2221 | 0.03266 0.2673 0.2465 | 0.4999 0.0569 0.0127
20 0.6431 0.0536 0.1866 | 0.0939 0.1700 0.0781 | 0.3789 0.3174 0.0046

495 0 0.0036 0.0406 | 0.2286 0.0600 0.0172 | 0.0110 0.9387 0.0182
496 | 0.1588 0.0035 0.0107 | 0.08183 0.3163 0.0102 0 0 0.0016
497 | 0.1551 0.0009 0.0065 | 0.07869 0.1453 0.4821 | 0.7777 0 0.0033
498 | 0.1576 0.0011 0.0073 | 0.0120 0.1679 0.3786 | 0.5334 0 0.0060
499 | 0.1197 0.0006 0.0059 | 0.0721 0.2391 0.0172 | 0.4405 0.1432 0.0097
500 | 0.3600 0.0001 0.0049 | 0.0273 0.3960 0.0079 | 0.6331 0.1410 0.0093
0.5010 | 0.0514 0.0033 0.0049 | 0.0182 0.3499 0.0111 | 0.7690 0.1376 0.0089
0.5020 | 0.2503 0.0034 0.0042 | 0.0222 0.1744 0.0132 | 0.6198 0.1274 0.0066
0.5030 | 0.1195 0.0147 0.0165 0 0.4283  0.0060 0 0.1530  0.0049
0.5040 | 0.0974 0.0144 0.0027 0 0.2241 0.0048 | 0.4778 0.0574 0.0043
0.5050 | 0.1422 0.0060 0.0131 | 0.0085 0.2023 0.0054 | 0.5604 0.0669 0.0004

1102 | 0.1898 0.0016 0.0413 | 0.8313 0.0767 0.0381 | 0.6875 0 0.1451
1103 | 0.2094 0.0015 0.0352 | 0.8262 0.0673 0.0451 | 0.7298 0.2808 0.0147
1104 | 0.1711 0.0011 0.0040 | 0.6648 0.0915 0.0462 | 0.5563 0.1831 0.0105
1105 | 0.1816 0.0012 0.0116 | 0.6658 0.1049 0.0371 | 0.6591 0.2874 0.0057
1106 | 0.1191 0.0011 0.0116 | 0.6260 0.1155 0.0393 0 0.0196  0.0060
1107 | 0.0417 0.0012 0.0041 | 0.4992 0.0781 0.0382 | 0.0271 0.2559 0.0065
1108 | 0.1058 0.0033 0.0045 | 0.0019 0.0589 0.0421 | 0.6209 0.8289 0.0018
1109 | 0.1740 0.0021 0 0.0305 0.0446 0.0316 | 0.8431 0.2366 0.4511
1110 | 0.2912 0.0021 0.0163 | 0.0385 0.0342 0.0037 | 0.2910 0.0489 0.0257

Table 25 gives the e-sub-optimal estimates of the parameters w1 (Mg, k), 01,1 (T, k), o1,2(1hi, k), 01,30k, k),
uz (g, k), 02,1 (M, k), 02,2(Mk, k), 02,31k, k), us(the, k), 03,1 (M, k), 03,2(Mk, k), os,3(1hk, k) for each of the

energy commodity data sets.
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Figure 37.: The graph of 0’171(7?1]6,]{), 0'172(7?%,]{}), 0'173(7‘?7,k,]€), 02,1(mk,k), 0’272(7?%,]{3),

o2,3(k, k), 03.1(Myg, k), 032(mg, k), 033(1, k) for Natural gas, Crude oil and Coal, respec-

tively (with jump).

Figures 37: (a), (b) and (c) are the graphs of 01,1 (", k), o1,2(1k, k), o1,3(Mk, k), 02,1 (1, k), o2,2(k, k),

02,3(Thi, k), 03,1 (M, k), 03,2(Mk, k), 03,3(1, k) against time ¢, for the daily Henry Hub natural gas price data set

[27], daily crude oil price data set [28], and daily coal price data set, respectively.

184



Table 26: Real and simulated estimates (with jump) for Natural gas, Crude oil, and Coal.

tk Natural gas Crude oil Coal

Real  Simulated p§ Real Simulated p3 Real Simulated p3

11 | 4.0200 4.0500 58.9900 58.5200 16.5900 16.6000
12 ] 3.9900 3.9600 59.5200 59.5099 17.4600 17.4635
13 | 3.7500 3.6690 61.4500 60.3377 17.8900 17.8886
14 | 3.7700 3.7341 60.4900 59.4191 17.5500 17.5188
15 | 3.4100 3.3967 61.1500 60.1580 17.4100 17.4188
16 | 3.3500 3.3947 62.4800 62.5028 16.7500 16.7789
17 | 3.4900 3.3900 63.4100 63.5524 17.6600 17.5341
18 | 3.5500 3.4957 65.0900 64.9224 17.5200 17.8130
19 | 3.9200 3.8743 66.3100 66.8239 18.5000 18.8453
20 | 3.8600 3.8241 68.5900 68.1206 19.0600 18.9453

494 | 4.2300 4.2295 106.7000 106.6374 33.2200 33.1852
495 | 4.1900 42191 107.1800 106.9973 32.7600 32.6677
496 | 4.3300 43414 110.8400 111.0084 33.6500 33.8070
497 | 4.3300 4.3261 111.7200 111.7084 33.7100 33.7061
498 | 4.3700 4.3863 111.6800 111.2084 34.7500 35.7057
499 | 4.3200 4.2167 111.7200 111.6126 34.5400 33.5457
500 | 4.3500 4.3577 112.3100 112.4358 34.0400 34.2862
501 | 4.3800 4.3535 112.3800 112.5682 33.1000 33.1330
502 | 4.5100 4.4389 113.3900 113.2925 33.6700 33.6216
503 | 4.6000 4.6139 113.0300 113.3077 33.9400 33.9216
504 | 4.6000 4.5964 110.6000 110.8350 33.8300 33.9216
505 | 4.5900 4.5564 108.7900 108.7598 32.0200 31.9867

1102 | 3.7200 3.6616 108.2300 108.2354 4.7700 4.5482
1103 | 3.7300 3.6477 106.2600 106.1451 5.0100 5.1120
1104 | 3.6800 3.6748 104.7000 104.6723 4.9800 5.1180
1105 | 3.6600 3.6861 103.6200 104.6723 4.7300 4.7893
1106 | 3.5900 3.6436 103.2200 102.9765 4.6800 4.7074
1107 | 3.5200 3.5213 102.6800 102.7652 4.6300 4.6419
1108 | 3.4900 3.4564 103.1000 102.9765 4.7400 4.4016
1109 | 3.5100 3.2596 102.8600 102.9652 4.3300 4.1826
1110 | 3.4800 3.4604 102.3600 102.4345 4.1800 4.4606

Table 26 shows the Real and simulated estimates for the spot price processes p;(t), 7 € I(1,n).

The next figure shows the graph of the real and simulated prices (with jump) for Natural gas,

Crude oil, and Coal data set
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Figure 38.: Real and Simulated Prices (with jump) for Natural gas, Crude oil, and Coal.

Figures 38: (a), (b), and (c) show the graph of the Real and Simulated Spot Prices for the daily Henry Hub natural gas

data set [27], daily crude oil data set [28], and daily coal data set [26], respectively. The red line represents the real data

set p, while the blue line represent the simulated data set py;,, ;. The graph fits well. To reduce magnitude of error, we

increase the magnitude of time delay. It is obvious that these curves fit better than the curves in Figure 31. It follows that

the interconnected dynamical system with jump process incorporated into it performs better than the one without jump.
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Chapter 11

Forecasting

11.1 Introduction

In this chapter, we shall sketch an outline about forecasting problem for the case where there is
no jump. The sketch for the case where jump exist is similar. An e— sub-optimal simulated
value (y*(rni 1, e h), p*(rny 1t 1Y) at time ¢4, i € I(1,K*), are used to define a forecast
o ol ), pfem ) for (y(t 1), p(t ) at the time ¢ ! for the system of energy

commodity model.

11.2 Forecasting for Energy Commodity Model

In the context of [lustration 9.6.1, for i € I(1, K*), we begin forecasting from time t};‘l . Using the
data set up to time ¢. %, we compute 7, it wy (it 67 Y), B (it ), Ky (it 1),

a

Y (e ), 85 (it ), o (i ), 4,1 € 1(1,3) fora € 1(0,k — 1). We assume
that we have no information about the real data set {y; (¢~ 1)}iV . - Under these considerations,
imitating the computational procedure outlined in Section 10 and using solutions to (9.58)-(9.59),

we find the estimate of the forecast y/ (i} ', . ") and p/ (11 !, ¢ !) at time ¢} ! as follows;

vl = g i) + (wnizh 62 — i i) ) x
1 ~i—1 1
[’i]y(mk 17t2 1)%( 2 17t2 1)

n
"‘l;ﬁjlyz(mk Lt | At
J

+5jy(mk 17tl 1) (uj(mk 1’t;c 11) _y](mk 17752; 11)> Wi, (k)
+ (s Omih ) - wwaﬂw§%wmp%mmm
J
(11.1)
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Pf(mz ! tl 1) = pJ(AZ llvtl 1)+pj(AZ 11atl 1) [VJ,J(A;C 11vtz 1)<yg(”1} 11’757, 1)
—p](mk 1atz 1))+ﬁ](mk 17tl 1)

+27jl(mk 17752 11)pl(m;g 117752 1) At

i#j
"‘GM(mk 1th ll)pj(mk 17752 11)273(79)

1 1 1
+pj(mk 1=t2: 1)ZUJl(mk pt}c l)pl(mk pt}c Zj(k),

(11.2)
where the estimates uj(mk l,t; =B BJ(AZ 11,15’ ), ﬂ]’l(mk l,tZ ) v (m,C l,tZ =B
6 (i L ), o (mi Y 6L, 4,1 € I(1,3) are estimated with respect to the known past data
set up to the time ;. We note that yfh -1 i1 is the e-sub-optimal estimate for y; (ti1) at time
.

To determine (y/ (mkH, t§€+11) pf(mkﬂ, t2+11))’ we need uj (g 1Y), B (w6,
r (e ), (g ), 80 ), and o (L ), 4,0 € I(1,3). Since we
only have information of real data up to time ¢;_1, we use the forecasted estimate yf (- ! St o)
as the estimate of y; (¢4 ') and to estimate uj( ), Bt ), kOl 6,

i ) 65 (i YY) and o (it 4, .1 € I(1,3).

Hence, we can write u; (7}, ', i ') as

w07 = i (G ) U ), (Gl (g )

ﬁj,l(m;g_latz_l) = Hj,l(m;g_lvy](t;_lﬁz 1+1) y](t;i_lﬁ,bz—l_’a)a 7yj(t;;:ll)vyj(mz_l7t7];—1))
~i—1 4i—1 _ ~7—1 i—1 i—1 —1 fr~i—1 —1

GG ) = G ) ) s )
~1—1 41—1 _ ~1—1 i—1 -1 i—1 ~71—1 —1

B],l(m§g 7t;g ) = ﬁj,l(m;g 7pj(t;_m;';1+1)ap](tz_m271+2)7 apj(t2_1)ap;'c( 2 aﬂg ))
Sl giely fi1 i1 i—1 1N\ L fraiel i1

Vj,l(mz 7t2 ) = Vj,l(mz y Dj (t;c—m;;l—i-l%pj(t;c—m271+2)’ 7p](t;c—1)7p] (mz 7t1],§ ))
T e - B - i1 i1

o1y, 1,752 ) o= a1 (11 17pﬂ(t;cfm?jlﬂ)’pj(t;cflm}jlw)’ 25 (g 20), 05 (17, 1’% ),

J,t€1(1,n)

To find (y (mk+2, t§€+2) p{(m;:_lz, tk+2)) we use the estimates

o 1 1 _ A G— i—1 1 i—1
U‘(m2+17t2+1) = Uj(m;€+117yj(t1_w 1 ) y]( Z_Az 1+3) -7yj(t2._1)7

1 A1
yl (i, y{ (i gy k1))
1y _ el 1 1 i—1
Hﬂl(mk+1vt§c+1) = ”J,l<m§c+1’yj(tz_w' 1 )yy(Z—AL*1+3)’~--;yj(t2—1)a

1 1 A 1 1
y{(mk tz )y]f( 2+17t2+1))

188



tll

i1 1 1 1
6]7l(mk+1’ k+1) = 6jyl(m2+1,y](t’7A21 )yj(tl m2—1+3)7---7%(tl )

yf(ml ' tl Y, y]f(karl’t;erll))

1 ~i—1 1 1 i—1
Bj, l(mk+17 ti;.;_l) 6jl(mz;+17pj (tlf il ) bj (tz 7m«;:1+3)7 ~-.,Pj(t2_1)7

G D A (TR )
1 _ S 1 1 —1 —1
’Yﬂl(mk+17t2+1) = ’yjl(m}CH,pj(t’_A;:l ),pj(t; m;';l+3)7'”7pj(t;€—1)7
1 1 1
pl (gt ), pl ik )

iy i) = Uj,l(mkﬂ’pj(tz_lw 1y )p](t’_lw 1+3) D),

pl (gt Y, pf<mk+1,tz:1>>, gl e I(1,n).

Continuing this process in this manner, to find ( (i e o0y pl (i 6 1)), we use the esti-

k1) P5 Moo oy
mates
) .
(m;wrll 17t2+1l ) = uJ(mk—i—l 17%(752,1% 1 )yﬂ(tl : *1+l+1)""’yj(t2_—11)’
yf(” ! tl Y, vy]f(mZ;Jrll 1’t;c+1l 1)
R t) = Hj»l<mk+l—17yj(tz_1w )i ! ,1+l+1),...,yj(t2__11),
?J]f(ml ! tz 1)7 ayf(m2+1l 17t;<:+1l 1)
5],l(m;c+ll 17%11171) = 5Jl(mk+l 17313(2_1w—1+l) yj(Z_lw—1+l+1)a-'-7Z/j(t§c:11>’
yjf(w ! tz 1)7 7y]f(m;c+ll l’t;c—i-ll 1)
ﬁjl(szrll 1at2+11 ) = ﬁjl(mkﬂ 1,p](t2 lw 1, )pj(tz_lw 1+l+1) "'vpj(tzill)’
295(7”z L), ,pj(szrll 1 beri-1)
’y]l(miz—i-ll 1’t2+11 ) = VJl(mk:Jrl vpa(tlflw 1 )pﬂ(tlj” 1+l+1) oD (Bh)s
p;(w L, ,pf(szrll 1> teri-1))
(M1 ti) = on(m 1’117J(tz,1m;c 1 )pi(tl 1 *1+l+1)""’pj(t2:11)’
pj(w L, ,pj(m;,;l b te-1))s gL e I(1,m).

11.2.1 Prediction/Confidence Interval for Energy Commodities

In order to be able to assess the future certainty, we also discuss about the prediction/confidence
interval. We define the 100(1 — «)% confidence interval for the forecast of the state

(y%_l,t;_l,pfﬁ;_l’t;_l) at time t%‘l, I >k, jelI(l,n)as

y]f(mz ! tz 1) + 21 a2 <S.ZA;7:7~L1 tifl(y‘{) )

1—1°71—1

. 1/2
P ) s (3 0 0D)

1—171—-1
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1

el el 1/2 . -
where (77 (1)1, t}_%)) /2 i the estimate for the sample standard deviation for the forecasted state

i i 1nw1/2 . . .
yj, and (sJ J (mff%, t}j)) / is the estimate for the sample standard deviation for the forecasted

state p; derived from the following iterative process

A1 i1 Ai—1 4i—1
—pJ =1, ) ) + By 1)

i#]

Sl giel Sl giel
+p§(m;—1 1) l; 51 (y 15t 21)p
J

It is clear that the 95 % confidence interval for the forecast at time ¢, is
. . . 1/2 . .
yl (gt ) — 1.96 <s%_11’k_1(yj )) cyl gt ) 4+ 1.96 (

o - 1/2 o
pl (gt t) — 1.96 (sijjil k_l(p;‘)> p) (gt 67 +1.96 (

k-1

gl 6 =yl + (w6 — o)

n
P | ~im1 i1 ~im1 i1
’%j,j(m;fl’t;fl)yf(m;fl’t;fl) + l; "ﬂj,lylf(m;fpt;q)
j

tﬁ)) Wi

~i—1 4i—1 ~i—1 4i—1
85501 671 (ws i 6D — o)
n
ai—1 4i—1 ~i—1 gi—1
+ (w22 = o] 0L 7)) 3 bl
J

~i—1 4i—1 ~i—1 4i—1 ~i—1 4i—1
Pl A7) = izl ) + ) (]t [

n . . . .
3 i i hpl (mith tﬁ‘i)] At
RN A R VAR())
n
i—1
t§—1)Zj,l (l)

At

fie1 4ie1
)

V2
B ) ) ,

(pf)>1/2> :

where the lower ends denote the lower bounds of the state estimate and the upper ends denote the

upper bounds of the state estimate.

11.2.2 Tllustration: Prediction/Confidence Interval for Energy Commodities with no jump

For the case of no jump, the following graphs show the simulated, forecasted and 95 percent con-

fidence limit for the daily Henry Hub Natural gas data set [27], daily Crude Oil data set [28], and

daily Coal data set [26], respectively.
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Figures 39: (a), (b), (c) show the graph of the forecast and 95 percent confidence limit for the case where there is

no jump for the daily Henry Hub Natural gas data set [27], daily Crude Oil data set [28], and daily Coal data set [26],

respectively. Figures 39: (a), (b), and (c) show two region: the simulation region S and the forecast region F'. For the

simulation region .S, we plot the real data set together with the simulated data set as described in Figure 38. For the

forecast region F', we plot the estimate of the forecast as explained in Section 11. The upper and the lower simulated

sketches in Figure 39 (a), (b), and (c) are corresponding to the upper and lower ends of the 95% confidence interval.

11.2.3 TIllustration: Prediction/Confidence Interval for Energy Commodities with Jump

For the case of jump process, the following graphs show the forecast and 95 percent confidence

limit for the daily Henry Hub Natural gas data set [27], daily Crude Oil data set [28], and daily Coal

data set [26], respectively.
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1200

Figures 40: (a), (b), (c) show the graph of the forecast and 95 percent confidence limit for the case where there is jump

for the daily Henry Hub Natural gas data set [27], daily Crude Oil data set [28], and daily Coal data set [26], respectively.

Figure 40: (a), (b), and (c) show two region: the simulation region .S and the forecast region F'. For the simulation region

S, we plot the real data set together with the simulated data set as described in Figure 38.
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Chapter 12

Conclusion and Future Work

It is easily seen from Figures 31 and 38 that the model with jump performs better than the model
without jump. This is because the curve fits better at the jump times for the jump case than the case
without jump.

For j,1 € I(1,3), the estimates for the drift interaction parameters ; (7, t};l) for the case
where jump is incorporated suggest that there is definitely interactions between the spot price of
these three commodities. As discussed in (9.46) and (9.47), the sign of these parameters suggest
if there is competition or cooperation between commodity [ and j. The estimate of the parameter
v (T, tﬁ;l) in Tables 17 and 24 and Figures 28 and 35 suggest that these commodities either
compete or cooperate with each other depending on the time period. We can also describe the
relationship between any two commodity j and I, j # [ € I(1,3) based on the overall average
il = % % Vi (1, tifl). For example, for the case where jump is incorporated, 71 3 = —0.0017
and 73 1 1:1—0.0095. This suggests that on the average, there is competition between these two
commodities. Also, 12 = 0.0018 and 721 = 0.0083. This indicates that on the average, there
is cooperation between natural gas and crude oil. Finally, 423 = —0.0146 and 432 = —0.0013.
Therefore, on the average, there is competition between crude oil and coal.

In the future, we plan to apply the Local Lagged Adapted Generalized Method of Moments to
interconnected nonlinear stochastic dynamic model for log-spot price, expected log-spot price and
volatility process. Also, we plan to incorporate delay in the multivariate interconnected nonlinear
stochastic model. We plan to be able to apply the extended Local Lagged Adapted Generalized
Method of Moments to other multivariate interconnected nonlinear dynamic model different from

energy commodity model.
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Appendix A

A.1 Existence and Positivity of delayed Volatility in Chapter 4

LEMMA A.1 Suppose u(t) is F; square-integrable, adapted, non-anticipative process. We have

( /: u(t)dW(t)>4] ~0. (A1)

Proof. We start by showing that (A.1) holds for simple predictable process using Definition 1.4.2.

E

The extension of the stochastic integral to square-integrable adapted process follows from [91].

We denote W (¢;) by W;,. Using (1.7), we have

U?MMWYI E<immfmﬂy

i=1

E

= 3 E[Ff]AL; + ) E[F] [F}] AtAt

i=1 ij=1
i#]j

O

Denote by C' = C([—7,0],R) the Banach space of all continuous functions [—7,0] — R under
the supremum norm

lallc = sup |a(f)], o€ C. (A2)
0e[—7,0]

Denote L?(C,R) to be the Banach space of all measurable maps [tg, 7] x 2 — R which are L?

with norm

1811220y = EallBI2]- (A3)

Define u(t, ;) = 0(t,1);). The differential equation (4.10) reduces to
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du(t,¢r) = f(t,u(t,¢r), w)dt, u(to,) = uo(¢) > 0. (A4)
where

t 2
F(t dow) = a + A { / |Vl E)awa(s)| -+ eult, ). (AS)

THEOREM A.1 Using Lemma A.1, f(t, v, w) defined in (A.5) satisfies

{f(t,ul,uof(t,uz,uoquto,mpm,m,m < L - wllegnxen o
<

1t u, w)] K1+ [lull 2o, mx )

for all uy, ug € L?([to, T] x C,R)

Proof. For any u1, uz € L*([to, T] x C,R)

£t ur, w) — f(tug,w)||72 =
sy ey

e(u(t, ) — ua(t, )]

([ o )]

E

2

< 2E {62

+? fua (t, ) — U2(ta¢t)\2]
< 48R ” ([ vatagawe)

+2°E un (t, ) — ua(t, ¥r))?

< Lijuy (¢, 1) — uQ(t,z/Jt)HQLz, where L = 2¢°.

4

vz ([ vaeaano)

1

Likewise,

2
It uw)liz = E

a+p </}: \/@mdw(s)>2 + cu(t, )
([ v

+ 2B |a + cu(t, vy
4E [Jaf + ¢ u(t, o))

20°E

IN

IN

K1+ ||lullz,], where K =4max{|al? |c|*}.
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Next, we shall show that the solution u(t, ) of the IVP (A.4) satisfies Lipschitz condition whenever

the initial condition y(%o, 1) = yo(¢) in (A.4) satisfies the following assumption:

HQZ
a). up(v) satisfies Lipschitz condition, that is, for every 11, 1o € C, there exist a constant

M7 > 0, such that

luo(¥1) — uo(2)ll < Mi|lpr — el

and

b). iﬁf uo(y) = My > 0.

THEOREM A.2 Every solution u(t, 1) satisfying (A.4) with initial condition satisfying Hs(a) sat-
isfies Lipschitz condition.

Furthermore, under condition Ha(b), then \/u(t, ) satisfies Lipschitz condition.

Proof. For any solution w1 (t, 1), ua(t,12) satisfying (A.4) and assumptions Ha, with 1; = ¥y,

i =1, 2, we have

”ul(t7wl) — UQ(t, Q/)Q)H%Q —
2

/t: (6 [</T de(T)) < / ST Jualr Ga)dW (T)ﬂ

E

+e(ui (s, 1) — ua(s, 2))) ds|’

G e ([ o)
e [ o) = s v 2
<[ (s[([ vemmanrn) '~ ([ vianin)]) o]
28 e "Gt 1) vt v |

i - 2 ds

t
§21E/
to

([ vawmavo) - ([ vatame) ]
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t
+2E |C(U1(S7’¢)1) —U2(87¢2))|2d5

([ vawmaro) - ([ vatme)]

2

t
< 20°T / E ds
to

t
+202T/ E | (uy(s, 1) — ua(s, 12))|* ds, using Holder’s inequality,
to
t
< 22T | ||(u1(s, 1) — ua(s,49))||?ds, using Lemma A.1.
to

By Gronwall’s inequality, [70, 66], we have

ut(t, 1) — ua(t,2) | < llun(fo, 1) — ua(to, vo)[|eT”
< Mslug(vr) — ug()|l, Mz =eT",

M |11 — 1ba|lo, where assumption Hy(a) is used, and M = M; Ms.
(A7)

A

IN

Furthermore, using assumption Hy, there exist a positive constant M such that My < ||\/u1(t, ¢1)+

\ua(t, 12)]|. Substituting this into equation (A.7), we have

IV ur(t, 1) — VVus(t, ¥2)ll 2o ) x oy < Nt — vollo, where N = M/My.  (A.8)
[l

In the next theorem, we show conditions for positivity of the solution u(t, 1;) of (A.4).
THEOREM A.3 Differential equation in (A.4) has a positive solution if o« > 0, 5 > 0.
Proof. Using the transformation

2(t, 1) = e Um0t 4y),

equation (A.4) reduces to

dz = [ae—C(t—tO) +8 </;T Vz(s,¢s)exp [—%(t - s)} dW(s)) 2] dt.

Hence, by hypothesis, z(t, 1) is an increasing function of ¢. Since wug(tg, %) > 0, then z(t, ) is

positive. O
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Appendix B

B.1 Algorithm for Simulation

Algorithm 1 Estimating parameters

Given initial parameters and initial predictions Z(t1|tg) and P(¢1|to),
for £ = 1ton do,
for j = 0to 2 do,
for m = 1 to 6 do,
Compute §(ty|tk—1) and rj, (tk|te—1)
Compute 2 (tg|tx) and P(tg|tx) using (5.17),
Compute Z(tg41|tx) and P(tgy1|tr) using (5.26),
Compute e, using (5.27),
end for
end for
end for
Return e;..
Compute L(®) using (5.28),
= argmin L(©®)

Return L.
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B.2 Expressions in Lemma 5.1
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+

_.I_

o4 — 03

2h3

2

95
+2h3

2
03
+4h4

n
5
h3

p=1
2 n
92
h3
p,g=1
P#q

p=1
n

p,g=1
pF£q

n

p,q=1
PF£q
n

[eptpSphZh" + 2Ry dph |

I = T = T
_eqﬂp(sphﬂp(spﬂq(sqh + eptigdqhyipdpiiqdgh }

[ o ~T = o=T
02y OppigSh + eppiydpiigd hoZh |

p=1

p,q=1
pF£q
n

r = =T ~ =T
_eqﬂp5pﬂq5qhﬂp5ph + €ptipdpligOghyigdgh }

[epCTupapﬁégﬁT + echagﬁupapﬁT]

- T - T
[eqCTﬂpéphﬂp(sp/‘q(th +epC" 11g0hy1p0ptqdgh }

|eaCT 021y 0pp1g0h” + eyCTppdpad,hozh" |

~ ~T
eqCTﬂpépﬂqéqhﬂpéph

- - T
epC 11pOptiqdhyigSyh

p,q=1
p#£q

~T ~ ~T
eppOph ppdphyipdph

~T ~ ~T T ~ T
[eqﬂp‘sph tpOphpigdgh + equpdph p1goghyupdph

~T ~ ~T
+eppipdph pgdghpgdsh ]

3
92

4h®

~T o T ~T oe T
[erupaph 2010100, + €yl 02,8, p1ySph

p,q,r=1
pPFEGFET

=T - 0T
+eqhipoph Mp‘;pﬂq(sqh5gh }

199



09204 ~T ~ o~T ~T ~ o~T
e [equpéph up(Sp,uqéqhéih + eppigdgh ,updpuqéqhégh
P,
P#q
=T ~ =T
+€q5;%h HpOphpipdppigdgh }
3
o ~T ~ =T ~T ~ ~T
ﬁ [eryqéqh LpOpttgOghpt,dppirdrh™ 4 eppigdgh 11,0, 10q0g 016 110 h

p,q,r=1
pFEGFET

=T ~ o=T =T ~ =T
+eptigdgh 11p0ppgdah02R° + e fipdppigdgh 11p0,pa8.hp0,h

n
0204
4hb
D,q
P#£q

~T = o-T
+eqpdptigdgh ,up(sph(if,h }

~T ~ ~T ~T = 0T
[ep02h” b pdopiySph + egd2h j1g8,h0%h

3
92

n
T ~ ooT T - T
= [eqagh 1a0R07R" + €,62h" 1140,By1, 5, p145,h

p,q,r=1
PAGET
~T - ~T - B -7
+eroh g0 hig0qpedrh’ + €ppupOptigdgh” 11y0,h0r firpigdgh }
3
o =T = orT ~T - T
4h25 [equp5puq6qh 100N+ e pipOppiqgdgh 11y8phpig0, 0 pirh }
p7q7,r:1
pFEGFET

n

=T = o T =T ~ =T
Z [epﬂpépﬂq(sqh Mqéqh‘sgh + erfipOptiqOqh tigdqhyiror pipdph
P:q
p#q

tegd2h’ o2hp,oh" |
3

4h?

0204

4h®

n
~T = o~T -7 = 5T ~T o= ~T
S er [rrdngdih 182" + pp0pp0gh g 2R + 620 62hy1,
p,q;r=1
PFGFT

n

=T = ~T ~T = =T
E :[eqézh 1ipOptiqOqhiipdph +€p5§h 1ipOptiqOqhiigdgh
2
P#q

~T - ~T ~T oo ~T
egd2h fpOpitgdahptndph’ + eqpipdpitydoh’ 2hy1,ogh" |

09204
4h®

n
0204
4hd
Pa
p#q
n
0204
4hd
Pa
PF#q
- T T T T
Z €r [Mp‘spﬂq‘sqh ‘572~h,up5ph + kpOpliqdgh 5Eh/iq‘sqh }
Dy, =1
pFEGFET

~T ~ T ST o ~T
{%5311 HpOphiqdghpigdgh + €qpipdpfigdgh 512Jh:“p5ph ]

“T o ~T “T o ~T
[eqﬂp‘sp/‘qéqh 5§hﬂp5ph + €ptipdpligdgh 5ghﬂq5qh ]

3
92

4h?

200



2 n
o4 — 0O - o= ~T - ~ ~T
Li, = 42h4 2 [Mp(s R0, 0020+ 1,0, 00,02R; 1, 6,0 " + 620,00 11,0, B
p=1

n

2h4 Z fpOp hZNq5 hjl‘p‘gp/iq‘; h' + W 25211 0i,j Ri;

p,q=1
p#q

o3 - - -7 - - -
2TL24 [#p‘sphiﬂpépl‘qfsthﬂq‘sqh + tqOqhifipdptiqdqhjppdph
pyg=1
psﬁq

- Zd hje;r R + h4 Z 1o 0ptigOqhi 0, 11g0 R

p,g=1
pF#q

g = = ~T 06+ 205 — 30204 - o~ onT
+ gt D HodphaBahipigd il + o S (82hi02h;0%R" )

p,q=1 8h p=1
pF£q
3 n
0409 — O ~ o~ o~T = 040
e Y GhidhEh o Z 52ty OphigSa; 1B tipOph
p’q7T:1 p,q= 1
PAGET p#q
3 n
0409 — O - - - - - T
+ 3H6 2 Z [5zhiﬂp5pﬂq5th/‘p5pﬂq5qh +5§hmp5puq5thup5puq5qh
p,g=1
psﬁq
o409 — O3
872 Z LpOphtgO ;o2 hjlupép,u,qd T h2 Z(S?hjezR“
p,g=1
p#£q
n
0402 ~ o or ~T ~ o~ ~T
Sl SO [T TN 0 T T T B T
p,q=1
p#q
0409 — 03
+T2 Z HpOphgOqhidy hJ,‘kD‘Spﬂq(S h'
p,q=1
P#q
3
0409 — O - o~ - . o~T
+TQ (f‘p‘spﬂq‘sqhi#p‘spﬂqfsth(sgh +Mp5p#q5qhi#p5pﬂq5th5gh )
p,g=1
pF£q

o3
+ 8h6 Z (up Oplhgdyq hzuqéqurd hjupdpuré n' + LpOpitgOq h;62 h],uq(Squpd h'

p,q,r=1
pEGFET

~ - ~T
iy OphtaShittadotty By O ptydph ) + — Z 52hiel Ry j + 62hjel Ry

201



n
g

3
- - T
+ 87h26 Z (Mpépﬂqéqhiﬂpépﬂr5rhj/~5q5qﬂr5rh
D,q,r=1
PAGFT

n
~ ~ ~T 092 ~
+14p0p g Oghi i Op iy 6,0 110 f1g OB ) ~ 92 E 5§hi (eijJ)
p=1

2 n
o - - T
+ ﬁ Z 1pOphifigOqh;f1q0qf1poph
pg=1
P74

o3

n

= - ~T ~ = 5T

+8ﬁ Z [5z%hiuq5qﬂr(srhjﬂr(srﬂq5qh + 1pOphgSehittqdsipph;07h
p,q,r=1
pF#qF#T

0402 - ~ ~T ~ ~ 9~T

+ 8h6 Z [@%hiﬂp‘sp/‘qéthﬂqdqﬂp%h "‘Np(spﬂq‘sqhiﬂq‘sqﬂpéphj‘sgh
P,q,r=1
DPFAGFET

- = 5T
1O ttadaittadotiy S by 02h |

n

1 . e .
3" 0662hy,0,h" §2hu,6,h"

T 4 AT _
E [AATAATY, ] = o5 3

n
~ ~T ~ ~T
+ Z ag’upépuqdqhupépuqéqh wrOrhpe0h

p,q,r=1
DPAEGET

n
= =T o . =T = =T = =T
+ Z 0204 [5§hﬂq5qh 5£h(tk72(tk)),uq5qh +5§hﬂq5qh 1ipOptiqOqhpipdph

p,q=1
p#q

321,000 62hstg0h" + pp0,11q00hy1ySph” 020 0h |

n

~ ~T o= ~T ~ ~T - ~T
> cas [02hyrgdh’ G20 h" + 52hjag8oh” pp0pmq0ghyiydh" |
p,q=1
p#q

n
- T - T - T - T
> b [02hyrgdoh” prSeptad b+ 2hpag0gh pigdp1,8hys, 8,

p,q,r=1
pFEqFT

~ ~T o= ~T
100 ptad b 02hyigd b |
n
~ ~T o= ~T ~ ~T 9= ~T
Z 0204 [updpuqéqhupéph 6§huq5qh + ppOppgdghpigdgh 6§huq(5qh

p,g=1
p#£q

ST - T
F11p0phaOqhpipdph 1y0ptigdghyipdph }

202



n
~ ~T o= ~T - ~T o= ~T
> 0 |02hutgdoh” 2hjagdoh” + j1q8,r00bye, 5 R 6260

p,g,r=1
PFEGFET

- ~T ~ T
+1pOp ptqbghpipdph 1g0g pir 0y by 6h

n
~ =T ~ ~T
Z 0204 [l‘q‘sq/‘paphﬂp‘sph HpOphqdghyipdph
p,q=1
p#q

~ ~T ~ T ~ ~T o ~T

FhpOptigSahpigdgh ppdptigdpigdgh’ + pydpiigdghyigdh” S hyuydh ]
- 95 . ~T ~ AN -7 ~ ~T
Z 0204 [5ph(tk72(tk))/~tp5ph HpOphgOghyigdgh + 0 hpgdgh 11p0p11g0ghyigdgh

p,q=1
p#q

~ ~T ~ ~T
+1pOptiqdqhpipdph 11g0qppdphyipdph }

n
~ ~T ~ ~T
Z US’ [updpuqéqhupéph fr-Or fgOgh -0, h

p,g,r=1
PEGFET

. T " T . T . T
FhpOppigdghpigdgh pipdppnr0rhp 00 b + 1140 -0 0ty 0. 0 1y 0p 1040510 }

n n
~ =T ~ ~T = o=T ~ =T
> 08 upOpigShyi S 1Sy igShy b+ " o60Phdoh u,0,hy,6,h
p,q,r=1 p=1
pFEGFET

n
= ocT ~ =T ~ =T ~ =T
Z 0204 [52115;2;11 f1q0ghpgdgh +- 5§hﬂp5pﬂq5qh f1q0qhjipoph

p,q:1
pF£q

+5§ﬁ5§ﬁ%q5qﬁuq5qﬂ

n
- 0T = 7 - T 7
Z 0904 [512,h612,h tqbghpgoh + 512)h,up5p,uq5qh fgOqhip0ph

p,q=1
p#£q

= ocT ~ ~T
iy Ophtg8h02R 10 g0 b |
n
~ ~T ~ T ~ ~T - ~T
Z o5 [5§huréruq5qh gOghyi-6,h +5§h,uq5qur5rh gOghpi-6,h

p,q,r=1
pFGFET

= oo T ~ ~T
—&—uréruqéqhéf)h Hrorhpgogh }

203



n

p,g=1

= 0T ~ =T = o~T ~ ~T
> 0204 | 1pBpttad 2R 1pSpbpagdeh + p1pSpitadROZR 11q8 bty
pF#q

- ST~ ST
+1pOptiqdqhpipdpigdgh ppdphyipdph ]

- 5T - T - oo T - T
> b [2ROZR 18 hyrgdh’ + 18,16, ROZR 11,8, byigdh
p,g,r=1

pFEGFET

- T - T
+1p0phigOghpigdqpir o ppdphys,drh }

n

~ ~T ~ ~T
E , 0204 [Mqéqﬂpéphﬂp(sp/‘qéqh fpOphppdph
p,q=1

p#q

~ ~T - -7 = 5T ~ ~T
i OpbtaShitnOpiadn ydahptgdh” + pp0p118,hOZR by b |
n

~ ~T ~ ~T ~ ~T ~ ~T
> ca0s [02hpiySypttadoh 1pSpbpagdeh + 02hyiySypgdoh 1g8 bty
p,q=1

p#q

- ST~ T
+1pOptiqdqhitgdqppdph ppdphyipdph ]

n

. 7 - 7
>~ 03 |oSptadorisdrptgdoh 1p0hyesd,h
p,g,r=1

PAEGET

" N S T " T - T
+1pOp ttgbghpipOppir 60 pgdghpn 0 4 p1g0g 100 hppdppigdgh f-6rhype,d,h }

n n
~ 0T 9= ~T ~ ~T ~ ~T
> ooupdphdth 62, + > 030004 hy 0 0,y 0pp5,h
p=1 p,q,r=1
pAGFT
n

p,q=1
P#q

SR i N

n

o 0T g, T o ooT . T
Z 0904 {uq(sqhégh 5§h(tk,z(tk))pq6qh +yq5qh53h pOpptgOghiiydph

= o=T o= ~T = 0T ~ -7
> o2t [ 1802 S2hpgdh" -+ 16ghOZR 1,011,013,
p,q=1

p#q

- ~T o= ~T
01O tgdh 2Rp1gd }

= =T - T - =T - ~T
S o8 [uq(sqh(sgh 1O 1gOqBpn SR+ 140,02 110,411,001, 0,

~ “T o~ T
176,011, 5, 1g5,R 62Ry146,h }

204



n
- T o T - ~T o= 7
Z 0904 [upéphup(in,uqéqh 5§huq6qh + pg0ghppdpLigdgh 5§h,uq5qh

p,q=1
p#q

~ =T ~ ~T
+pOphyipOppiqdght fp0ppigdghpiydph }

n
~ o~T o~ ~T ~ ~T o~ ~T
> 03 |nadhoZh’ 2hyugdoh" + 1,8 hyrgdopn, 6 62,00

p,q,m=1
DPFEGET

= =T - =T
+1p0phpipdprigdgh pgdgpirdrhys,orh }
- - =T - =T
Z 0204 [/‘p‘sphﬂq(sq/ﬁpdph HpOptiqdghpipdph

p,g=1
P#q

- T - T - ST or T
g SqhpipSphgdah 11p0p1iqdqhigdqh” + pgdohppdppgdgh 6 hyu,dph }

n
- 5T - T - T - T
Z 0904 {upéphéf)h HpOptgOghigdgh™ + 1,0, g0 hppdph 11pdph 0 g0 h
p,g=1
p#q

= o~T ~ ~T - -7 - ~T
10RO 1,0y 1018 + 1ySphynySyptgdoh 18Oy dh |
n
~ ~T ~ ~T
Z o8 [,up(sphupépuqéqh frOr fgOghp-0,h

p,q,r=1
DEGET

- T . T . T . T
+hgOghpipOppigdgh ppdppirdrhp0p 0 + a0 hypigdg pir- 6,0 10 p0g05 M0, }

n n
~ =T ~ =T ~ ~T = o=T
> oSSy OppgSgh ppOppigdghpe, i+ " 060 hy,dph 1,6,h00h

p,q,r=1 p=1
pFqFr

n
- -7 = 0T ~ ~T ~ ~T
> a0 [02hy1gdyh” b BOZR" + 52hyagdeh ey ppgdgh” |

p,g=1
pF#q

n
- T = 0T - T - T
>~ caors [02hyrgdyh’ pgd BOZR" + 52hyagSeh” pp0ph,0,01,04h

p,q=1
p#q

~ ~T = o-T - -7 = 5T
pOpttadhptndph’ g0 BOZR" + 52hy1g8gh” g6, hoZh |

n
~ ~T - ~T ~ ~T ~ ~T
> 03 |02hutgdoh” 10y Sypgdoh’ -+ 02pag0gh o0 bty 0,

p,q,r=1
PAEGET

~ =T = o=T
+ 1O frgdgh g0, h ,uqéqhdf)h

n
- =T = o T = =T = 0T
Z 0204 [,upépuq&qhupéph uq5qh6§h + ppdpligdghpigdgh ,uqéqhézh

p,q=1
p#q

205



p,g,r=1

n

~ ~T ~ o~T ~ ~T o

Y o8 b g0h0R" + pgdgpisShyn0,h 1,6,h0Zh
PFGFT

= =T ~ ~T
F1pOptigOghp,dph .0y dg 106, h

n
~ =T = ~T
+ Z 0204 [l‘q‘sq/‘paphﬂp‘sph HpOphiipdptigdgh
p,q=1

p#q

ST T ST~ oeT
FhpOptigSahpigdgh pgdghyiydpiigdgh’ + p1ySphigdghyigdeh 11,0,hdzh ]

p,q=1

n
~ . ~T ~ ~T ~ ~T ~ ~T
+ ) 004 [5§h(tk,z(tk)),up5ph 110 pp0ppgdgh” + 62hptgd R 11g0ghppd,ped.h
p#q

~ ~T ~ ~T
+1pOptiqdqhppdph iy dphiigdqpipdph }

n
- ~T ~ ~T
+ Z US’ [updpuqéqhupéph fr-Or gty p1g0gh
p,q,7=1

PFGFT

. A 7 . I R T
FhpOppigdghpigdgh pi0 gy dppir-0r b + g0 -0 hpty 0.0 1y 00110, 10 h

n n
~ ocT ~ ocT = ~T ~ ~T
+ > o6upophdh 0ot + Y o30S 10,10 g 0y pgSh
p=1 p,g,r=1

pFqFET

n
o o~T - 5T ~ ooT ~ T
+ Y oo [uqéqhdgh 1g0ROZR" + 140,020 11,0, By1,5p146,R
p,q:1

p#q

= o~T = 5T
+110062R" 1146,062R }

p,q=1

n
~ o~T ~ o~T ~ o5~T ~ ~T
+ Z 0904 [,uqéqhéf,h uqéqh5§h +,uq5qh5z2)h tpdphye,dp1g05h
p#q

- T = o=T
Oy Opptgdyh’ g0 hoZR" |

n
- =T ~ T - ooT - -7
S SRR (7000 TR YT SO s SIS M
p,q,r=1

pFGFET

~ ~T = =T
+r0rh g6y g0 gh ,uqéqhégh }

p,g=1

n
~ ~T = =T ~ ~T = o-T
+ Z 0204 [,upéphupépuqéqh ,uqdqh(Szh + pg0ghppdppgdgh uqdqhdgh
p7#q

- ST T
FpOphpipdpigdgh fipdphpiydppigdgh }

206



n
= =T = 0T ~ ~T = o=T
> 03 |adhoZh” 1, ghOPR" 4 1y hgrgd gy SR g6 h02h

p,q,r=1
pFGFET

~ =T ~ ~T
Fppophpipdpptgdgh 0,y dgpe6,h

n
~ =T = =T
Z 0204 [F‘p‘gphﬂq‘sql‘pfsph HpOphpipdptigdgh
p,q=1
p#q

- ST T - A
g0 1pOpigdgh” 1gdghyiydptigdgh’ + p1g8ehppdypigdeh 11yd,hd7h ]
n
T -7 L 0T - -7
> oot [ 1pBphoER gty bppigSeh + 18 hOZR" b By Opptydoh

p,q=1
PF£q

~ -7 ~ ~T
FhpOphipdppigdgh ppdphiigdepipdph ]

n
- ~T ~ ~T
Z 03 [upéph,upépyqéqh pr- Oty frg0gh

. A 7 . T - T
+htgOghpipOppigdgh pr0rhpnydppi-dr e + 000 dg pr 0.0 10010, 160G h }

n n
- =T = =T - =T o~ orT
E Ug#rérhﬂp(spﬂqéqh firOrhpipdppigdgh + E o6 HpOphyipdph 513115;%11
p,q,r=1 p=1
PAEGET

n
- ~T 9 9T - ~T gx T
3 w0 [uqéqhuqéqh S2RSZRT + 1140, By, 00" 02Ry1,6,1140,h

p,q:1
p#£q

- ~T o9~ =T
1010 R 52h62R }

n
. ST o =T - T o= 7
Z 0904 [uq(;qhuqéqh 512)h512)h + pqdghppoph 6}2)h,up5p,uq5qh

p,q=1
P#q

- T = o=T
ST YO TN
n
- ~T - -7 - ~T o= ~T
> 03 |adahperd b’ 52y Spgdoh’ -+ by, S 62Rd0p1,8,h

p,q,r=1
PFEGET

~ ~T = o-T
+pr0rhpgdgh urér,uqdqhézh }

n
- T o oT - T ~ oo T
> c20s | 1pBpbriadeh pp0p1qSghOZR + p1g8hitgdoh’ 101140062
p,q=1
pP#q

LT - T
T hpOphipdph 11p0p1q0ghp1p0ptg0sh ]

207



n
- ~T o~ o=T ~ ~T = ooT
> 03 [nabuhptgdoh” SROZR" -+ 1,6 hyigS b pdopird,h6Zh

p,q,r=1
pFGFET

~ =T ~ =T
+pOphpir0rh 10, 11g0gp1g0g 10T

n
~ =T = =T
Z 0204 [Mp‘;phﬂp‘sph 1qOqpOphfipdpiiqdgh
p,q=1
p#q

LT - T - T - o=T
Fhg0qhigSeh [1pOphadghiydpiigdgh’ + p1gdehppdph’ 11,0ppe6,hSTh
n
Y -7 LT o -7
>~ o2t [ 1pBhyigdeh” S2Rppbpmiq8eh + 1g8hptgdoh’ 2hpnydpptyoh

p,q=1
P#q

~ ~T ~ ~T
+hpOphipopht 11p0pp1gdghpigdqpipdph ]

n
~ ~T ~ ~T
Z ag’ [upéph,u,«érh HpOphtgOghpiy Oy pigdgh

" 7 . T . T " T
+htgOghpir0rh ppdppgdghpiydppi-drh + puy0r by o0 g 0g pir0r gty 0ppigdgh ])

JZR Z [2;@5 h,up5 h + ppdp h" HpOp h}

n

n
= o T = o T ~ ~T
+4TL4 Z(M@%hdﬁh +U% Z 512)115211 + HpOphipOphiqOqhyipdp ipdpfiqdgh
p=1 pq=1
p#q

n n

g9 ~ ~T

+ﬁ E pOphpipdph [E : (InnRii) + 2R
p=1 =1

n n
LT o= LT o= -7 -
4h 20452h Oph+ 03 Z Gh 070 + 1, 8ppipOppigOgh [1pOphipdppigSeh
p=1 Pg=1
p#4q

n n

= o-T = o-T ~ ~T
A 20452115;311 + 03 Z 513115311 + HpOphipOptiqdqhyipdptipdpiigdgh | R
=1 p,q=1

p7#q

+3RRT.

208



E[AATACT )Y, ] =

Sy h4 Z HpSylp,8,h" 62h + Z 1pSplpi,0,0" 62h
p,q=1

pP#4q
o2
+ort Z 10RO R 1pOptigOoh + — o Zﬂpa ho2h 11,6,h
pyq=1 p=1
p;ﬁq
o2 % n _ 7 ~
2h4 Z (1p0p h5 h' fipOp h) A Z (pOphyipOpriqdgh” 11gdgh)
p,q=1 p,q=1
p#q p#q
2 n
o
27}124 (kq0q hﬂpépﬂq(S h' HpOp h) + h4 Z‘SQhﬂp(s h' 11p0p h
p’iql
p
o2 ~ 7 ~
2h4 Z 52Rp1g0gh" 11g6,0) + 2h24 > tplptgShyidph p1gdgh
pg=1 p,g=1
p#tz P#q
2 n
o6 = 0T or
+ort Z 10ptigOqhpigdgh 11y0,h + —0 e > (6;hdZh" 57h)
pyq=1 =1
pF#q
n
o > Gphah 7h+ T Z 52hs2h’ 62h
p,q=1 p,q=1
p;éq p#q
‘;4];’62 Z 62h62h" 52 + "4"2 Z 52hs2h" 5%h
pq=1 p,q,r=1
p#q pFqFT
+U402 Z 52hﬂp5pﬂq5 h' 1pOptiqOq h+ —= 04 2 Z 52hﬂp Opliqdq h' [pOphiqOq h
p,g=1 p,q=1
piq p#q
n
040 ~ =T -
84h62 (52hup5puq5 n’ [qOqipOp h+ -2 8h6 Z 5§huq5qu7a6¢h [qOqirdrh
p,q=1 p,g;r=1
p#q pFqFET
0402 Z [4pOpHigOq h5 h' 1pOptiqdq h
pg=1
p;ﬁq
0402
Z HpOphidq h<5 b 1qOqtipOp h"’ Z 1pOpfiqdq h5 h' HpOphiadq h
P,q=1 pq=1
piq p;éq
o3
04072
+—— 0 Z LpOpfigOq h5 h' HqOqtipOp h+ 8h6 Z HpOphigOq h,upépuqé h 52h
p,g=1 p,q,r=1
P#q pFGFT

209



5 3
8h6 Z 1pOpfiqOq h5 h' 1pOptiqdq h+ =% 8h6 Z HpOptiqdq h5 b 1qOqHpOp h

D,q,r=1 p,q,r=1
pFEqFT pFEGFET
g409 ~ ~T o~ ~ ~T o~
Sh6 (Hp‘spﬂq‘sqhﬂp‘spﬂq(sqh 51311 + 1pOptiqOqhpipdppigdgh 53“)
p,g=1
P#q
03 & ~ ~T ~ - ~T -
87}126 (,upépﬂqdqhﬂqéqﬂrérh pOptir O+ ip0ppgOgh g dg i drh Hrérﬂpdph)
p,q,r=1
pFqFT

3 n

g ~ ~T ~ ~ ~T ~
87h26 § (Up(sp/iqéthf«p(spﬂr(srh fq0qtir O + ppdppiqdghpiydpperdrh Nrér/lq(sqh)
p,g;r=1
PFYFET

n

[(52}1 ejR‘J' + (512,hjeiRZ-7i] CT + —5 Z 52h5zsz]

4h2 2h2

p=1

E[AATcAT Y, ] =

01 r 2F 2r
S, W;Mpaphupé b CoZh 4+ 22 Z HpSphyi0,h Co2R"

2h4
p,q=1
p#q
2
+or Z 10RO R Cppdptigdh + —& 2h4 Z SOh62h" Cpupd,h"
P,q=1

p#q
N 2l o7 r =T =T
72 Z 1ip0phd7h Crupdyh + 1,000, 11g0gh" Crigdoh
p,q=1
P#q
02 &
2TL24 (t1g8qpp0p 1Sy h' Cpdyp h h4 Zé2hup(5 h' Crpdp h

p,q=1
p#q

2 n
o - T T - T =T
723 [5§huq5qh Chigbgh’ + pOphiqdehyiyd,h Cpigdeh ]
P,q=1
p;ﬁq

~ o=T ~T
+ 2h4 Z L0 ttgOahyigdh Cliydh + % 5,3115511 C&h
p,q=1 p=1
p#q

0402

- op 20T ~cor T | cop cop T ~cop T | cop copT ~copT
S > |o2hazh OOl + a2hoZh’ CoZh’ + o7ho%h’ Co%h

p,g=1
pF£q

210



n
0409 o5 o T og T 0409 2 ~T ~T
ore > o2hézh C7h + <iF 2hptpdphgdah Cpipdppigdsh
pg;r=1 pa=1
p#éﬁfr p#4q
o3
0402
< Z 02ty OB’ CripSppigdeh + s Z 52 Mytgdqitr S, Cigbypny 6,
p,q=1 p,q,r=1
p#q PAAFT
n
0402 - =T =T =0T =T
DY |20 p11q0h” Chuabattndph’ + piydpad BOZR Cppdypigdh
pyg=1
p#q
0402 ~ o~T ~T ~ o~T ~T
8h6 [,up(sp,uqdqh(ﬁh C'hgdqpipdph +Np5p,“q5qh5§h C'hqOqtipdph
pyg=1

p#q
= T T
+up5p,uq5qh5§h Cip0pitqdgh ]

o3 - 0T T oo T T
= [1p0011480hOP" Cluydppigdh’ + puySygdohOZR Cagdypiydyh

p,q,r=1
PFEGFET

- “T | 5=T
+HipOptigdahyiydppigdgh Co7h ]

0402

n
h i o7 = =T =T
Sh6 Z (Mp5pﬂq5qhﬂp5pﬂq5qh 05211 + pOptiqdqhpipdppigdgh Cégh )
p,g=1
p#£q
3 5
8hb
p,g,r=1
DFEGFET

- ~T ~T - -7 ~T
1O ttadahttadotiy S CltrSrpindph’ + puySytadoruydpitn8,h" Cpuyypgdoh’ )

~ ~T ~T
(Hp0ptaBabyigdytrdh Cpapdypu,dih

= ~ ~T ~T
T2 (Hp0ptadabpiySpprdh” Cpagdypeyo,h”)

0\ 2% N 2 pt
+ 2 (5phZRi,i+25pRh>

i=1

E[ACTAAT)Y;, ] = E[AATCAT|Y,, ]

E[ACTACTY;, ] = [ACTCATIYtk ]

E[ACTCAT)Y;, ] = Z hgupdh 2)CTCppsh’ + 22 52hCTC5%R"

h4p

3 v - - =T
+ 47]124 Z Mp5p/‘q5thTCMp5pﬂq5qh+ 52hCTC’(5§h + RCTC

p,q=1
q#p

211



E[AATCOTIY,, ] = |3 Smoh(Emdh’ + ok (5h(2)) (53h(2) " | cCT

- 4h4 Z pOptigSohpydptigdh + 62h62h" + R| CCT

p,g=1
L q#p

ElAcTccy, | = ccTec”

E [ACTAAT|Y;, ] =S, 2h4 Z 110, hC7 11,6, h52h

Z 10 CT 11,6, 002R" + o Z 10RO 110 By O pigSh

p,q=1 p,q=1
p;ﬁq p;éq

Zupa hCT62hu,0,h + 2. h4 Z (11p0,RCT 52Ry1,6,0" )
p,g=1
pF£q
ag -
2h4
p,g=1
piq

- s T - = T
{MpéphCTﬂpdpﬂq(thﬂqéqh + 1g0ghC 110y 1140 p1p0ph ]

2 n
2T
0,hC™ 16y hupé h' + 2h4

p=1 p,q=1
p#q

2h4 Z HpOphiqdq hC™ 1pOp h#q5 h' + 2h4 Z HpOphiqdq hC” 11q0q hﬂpé h'

p,q=1 p,q=1
p#q P#q

04

~ ~ ~T
o 52hCT p1404hpig0,h

06

8h6

n n
20 ~T 21 231 0402 20 ~T 21 2.1
(5phC 5ph5ph )+ Sho g 5phC 5ph5qh
p=1 pg=1
psﬁq

n
e > omCTameh + O Z 52hCT 52ho2R"
p,g=1 p,g=1
piq p;éq

Z 52hCT2ho%h" + Z S2RCT 11y BB piySppigd R
p,q,r=1 p,q=1
p#qsﬁr P#q
0'40'2
8h6 Z 52hC HpOphiqlq hﬂpép/‘qé h'
p,q=1
p#q

040'2

3 n
~ ~ ~T O ~ ~ ~T
S2hCT 14,0 h1q0p1gOqpiydph +8—h26 > 6200 140410, 0p1404 416, h

p,g=1 p,q,r=1
P#q PAEGET

0402

8hS

212



n
0402 ~ ~ ~T
<he > 1p0ptigghCT 6 1,0, 11454h
pg=1
p;éq
n
0402 0409 ~ ~ ~T
< Z 1pOptigSnCT 62148411, 0,R + e > 1pOptigdghCT 20y1,0, 11406h
pg=1 p,g=1
p#q p#q
o3 o3 &
= = ~T
% Z 1p0piiqdq hC 52hﬂp5pﬂq5h + 3756 8h6 Z Hp‘spﬂq‘sthTéEth‘sqﬂpéph
p,q;r=1 p,q,r=1
p#qsﬁr p#qsﬁr
o3
04 2
8h6 Z 1pOpfiqOq hC? 1pOpHiqdq h52h + Z HpOphigdq hC?o} h:“q‘SqMD‘S h'
p;]é:él p(;l
PEGET P#q
0402 = = o= T ~ ~ ooT
- (100118 ahCT 10114800620+ 0y CT 0y 16,002 )
pg=1
p;éq
o3
8h6 Z (,up Oplhqdq hC? fqOqftrOr hup5p,urf5 h'
p,gr=1
PAEGET

. - T - - T
+Mp(5pﬂq5thTﬂq5qu5rhﬂr(5rﬂp5ph + Mp(spﬂq(sthTﬂpép/ir(5rhﬂr5rﬂq5qh )
o3 - i .
= (upapuqath 110ty O p1g0 116, B )

p,q,r=1
pFqFET

092 - 02 - =T
2 Z (02hiejRjj + 6ohjeiRis) | + onz Z 50 6 ;R
p=1 p=1

B.3 Proof of Lemma 5.1

Proof.
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= E[Aa(t)(y(ts) — §(telti-1)T [Yi1)]
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where Az(ty) = x(tg) — T(tglte—1), Ay(ty) = y(tg) — J(tx|tx—1) and MO,Z(tk’tk:—l) can be

generated from 79 4 (tx|tx—1) O
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B.4 Proof of Lemma 5.2
Proof. From (5.10) and applying Baye’s rule, we have

P(x(tk)7y(tk)|nk—l) = P(x(tkﬂy}k)P(y(tk)’Y%ka (B'l)

Multiplying equation (B.1) by the product of two arbitrary functions s(x(tx)) and u(y(tx)), and

taking the expectations, we have

/ / s(z)uy)P(z,y|YVs,_, )dzdy = / / s(@)uly) P(x|Yy, ) P(y[Yy, ., )dzdy
— /[/S(%)P($|nk)d$:| u(y)P(y|Ye,_,)dy
= E[E[s(x(te) Ve u(y(te) Ve, ] -
Hence,
E [s(z(tr))uly(te)|Ye,_,] = E [E[s(z(tr))[ Y] uly(te)| Ye._,] - (B.2)

Equation (B.2) provides a systematic feasible procedure for solving for A;, B;, i = 0,1, and As.

Substituting s = x(tx) and u = 1, we have

E [2(tx)|Ye,_,] = E [E[2(t:)[Y5,] Vs, ] - (B.3)
Hence
E[2(te)Yi_,] = E[E@@)[Ye] Y]
This implies that
E(tplte—1) = E[@(teltr)|Ve,_,]

= IE[AoJrAl(y(tk)—@(tk\tkfl))+A2(Y—Y)(y(tk)—@(tk!tkfl))\Ytk_l -

Thus,

r1,0(tk|tk—1) = Ao(tk|tk—1) + Ao(ti|ti—1)ovo(te|ti—1), (B4)
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where 71 o(tg|tg—1) = Z(tx|tk—1). Substituting s = x(tx) and v = (y(tx) — gj(tk\tk,l))T, we have

E [2(te) (y(te) — 9(tklte—1))" [V _,]
= E [E [2(to)[Ys,] (y(te) — §(tlte—1))" 1Yo, ]
=E[E[(Ao + A1(y(tr) — 9(tkltr—1))
+Aa(Y = V) (y(ty) — z)(tkltk—1))) (y(tx) — Q(tkltk—l))T} |Y;‘/k,1} :
Hence,
11 (tkltk—1) = A1(tklte—1)ro2(trlts—1) + AQ(tk‘tk_l)rg—:g(tk|tk_l). (B.5)

Lastly, substituting s = z(t) and u = (y(t5) — §(tx|ts_1))" (Y — ¥)T, we have

E [ () (u(te) — 9(tlte—1)" (¥ = )%,

A (B.6)
= B [E [w(tn) Y3, (y(t) — §(tlte)) (Y = 9)71Y;,. ]
Hence,
ria(tilte—1) = Ao(trlte—1)oty(telti—1) + A1 (teltr—1)ro,s(trlte—1) B.7)
+Ao (L |th—1) Mo 2 (th|tk—1)-
The result follows by solving the systems of linear equations (B.4), (B.5), (B.7). ]
B.5 Proof of Lemma 5.3
Proof.

First, we substitute s = (x(t,) — &(t|tr)) (@ (tr) — 2(tx|tr))? and u = 1 into equation (B.2)

and obtain
E [(2(tr) — &(tklte)) (2 (tr) — &(tlte) T [V, ]
=E [E [(«(tx) — 2(txltr)) (@(te) — (] tr)" Yee] Ve ]
= E[P(tg|ty)] -

Hence,

Ny = By + Biroa(te|tk—1)- (B.8)
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Lastly, substituting
s = (w(tr) — &(teltr)) (x(tr) — 2(tklte))"
u = (yltr) — 9tults—1)) (y(te) — G(tlts—1))"

into equation (B.2)
Ny = Boroa(tk|tk—1) + Bi7ro 4.

The fifth and upper moments of y(t;) — §(tx|tx—1) is neglected in No.

E [(2(t) — &(trlte—1))(y(te) — Gtlti—1))T AT (y(tk) — G(tltr—1)) x

(y(tr) = G(trlte—1))" |Yio1]

can be generated from 7y 3,

E [(x(tlte—1) — A0) (y(tr) — d(tlte—1))" AT (y(tr) — 9(teltr—1))x

(y(tr) — 9(telte—1))" Ve, ]

can be generated from r 3,

E [A1(y(te) — 9(tkltr—1)) (@ (tr) — (tkltr—1))" (y(te) — §(tkltr—1)) ¥

(y(tr) — 9(telte—1))" Ve, ]

can be generated from 7y 3,

E [A1(y(ts) — 9(tlte—1)) (@(telte—1) — Ao)" (y(te) — §(trltr—1))x

(y(tr) — 9(tulte—1))" Ve, ]

can be generated from rg 3,

E [A1(y(te) — G(telti—1)) ((te) — G(tklti—1))" AT (y(te) — H(tklti—1))x

(y(tr) — 9(tulte—1))" 1Yo, ]

(B.9)

can be generated from 7 4, where 71 3, 79,3, and 7¢ 4 are defined in Appendix B.3. The conclusion

of the Lemma follows by solving the systems of equation (B.8) and (B.9).
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Appendix C

C.1 Proof of Lemma 6.1

Proof of Lemma 6.1 for small m., my_1 < mg, Proof.

0 —1-my_1 -1

= 1 . 1 ) .
Smk,k = Z Flag 1= — Z Fzp_1 + Z Flyg_1 + F0$k—1
mg . mg | . .
1=1—my i=1—my 1=—Mp_1
1 1-mg_1
_ . L .
= Mg—1Smy,_ 1 k—1 + Z Flop g — F 7™ gy — F7 ety
k i=1—my
+F0$k,1]
[ o 0 2
1 ) 2 1 .
2
Sk = Z (Flwkfl) - Z Flxp
’ mg | . mg .
i=—my+1 j=—mg+1
1 [—my_1—1 ) -1 )
) ] 0 2
== mi Z (lek_l) + Z (Flﬂ?k_l) + (F l‘k_l)
Foli=—mit1 E——
0 2
1 .
T | 2 Foe
P \j=—mt1
1 1 2
1 — . 2 1 _ X
= — Z (lek—l) — Z Flﬂfk_l +
mg |._ Mep—1 \ ._
1=—Mp_1 1=—Mmpg_1
2

-1
1 4
le'k,
o |2 1

t=—mg_1

L o o e
1 0 ' 2 —mp—1+1 ‘ )
- Z Flop_q + Z (szk—l)
Mk i:—mk—i-l i:—mk—i-l
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_ ME—1 9o ME—1 g2 a2
- Smk 1,k— 1+ m S mg_1,k—1 Smk7k+

mg
—mg_1+1 ) )
2 - — 2 Z FZI]}']C,I
(FOpo1)” = (Fmtag)” = () +i_mk+1( )
mp mp
Hence
2 _ mg_1 2 m 9 -
Smk T mkiklsmkq,k 1+ T ISmk Lk—1 Sm]m
SR (C.1)
(F0$k—1)2—(F_mk_l$k_1)2—(F_mk—1+1xk_1)2 izf%kH(F Ik—l)
+ mp + mp

. . 2 2 LR .
Next, we find an expression connecting S, 52 —1k—1 and sp, . By definition and sim-

m
plification,
2
) 0 , 0 , ) 0 l
Smk, = Z Flep_ 1| = Z (szkfl) + Z Flop 1 Fx_4
i=—myp+1 i=—mp+1 l,s=—mp+1
l#s

= (mr-1)sp, , hor T m-1Sh ey (FOmko1)? = (77l )?

1 2 Tttt 2 0 l
—(Fmeatly )+ Y (Flapa)’+ Y Flap 1 Forp
i=—myp+1 l,s:;ékarl
l#s
(C.2)
Substituting (C.2) into (C.1), we have
2 _ mg—1 [Mmg—1 2 mE—1 Q2
Sm,k} _ ’nI?Lk |: mp Smk 1k2 1+ Smk 1]{,‘ 1
—mp_1+1 ]
Fl
+(Foxk,l)Q—(F_mk—l$k71)2—(F_mk_1+137k71)2 I i77§k+1( o 1)
e " (C3)
0
Flag 1 FSz,_q
l,s=—mp+1
. l#s
my(my—1)
Likewise, using equation (C.2),
2 2 —mp_o—1 2
M 1S k1 = (Mi2)sp koo +mieaSp, koo + (F ap)® = (F7"™ 2 oy )
—Mp_2 -
_(F_mk_ka—l)Q"i‘ Z (Fzﬂfk_l)Q-i- Z lek—lstk—l'
1=—mp_1 lys=—myp_1
l#s
Also,
2 Q2 2 Q2 —2 2 —mp_3—2 2
mk*ZSmk,Q,k72 = (mkfg)smkfg,kfg + mk'*gsmkfg,kfzi + (F xk*l) - (F MMk=3 xk*l)
—mp_3—1 —2
_(F—mkfg—lmk_1)2+ Z (FZ5UI§—1)2+ Z Fl$k—1FSl“k—1-
i=—mpg_o—1 l,s=—myp_o—1

l#s
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Continuing in this sense and substituting S7, ;.4 =2,..,p—linto S}, , , we have

_ p _ p —i+1 2
2 _ Mk—i 2 Mk—p G2 (F )
(Mr-1)S5, 1k = 2 | Smp_ik—i T p=1 Sop_pk—p T 22 T
=2 | TI mp—; [T mx—; =2 ] mu—y
j=1 j=1 j=1
(F7i+1fmk_ixk_l)2 p (F*i“*mk—imk_lf
- Z i—1 - Z i—1
=2 IT mue—; =2 [T me—;
j=1 j=1
—it1
—it2-mp > Flag_(Fa,_q
p E (Flrk,1)2 p l,S=7i+2fmk,7;+1
l=—i+2—mp_ ;11 l;ﬁs
+ Z i1 + Z i—1
i=2 1 msj i=2 1 mnj
j=1 Jj=1
(C4)
Finally, the result follows by substituting (C'.4) into (C'.3).
O

C.2 Proof Lemma 6.1
Proof of Lemma 6.1 for small mg, my < my_1, Proof. Following the same steps, if my < mg_1,

p
2 mp—1 MEg—; 2 Mk—p Q2
Smk,k - my E i—1 smk,“k—i + p—1 Smk,p,k—p
i=1 | TT mp—; IT me—;
L =0 =0

F Oy, =1, Mk < M1
i —itlemp 4

. 9 (Flar_1)?
mg—1 Foitlay P =—itomyy
Wmy_1,k—1 — ;;Lk Z ( i-1 ) - Z i—1
=1 H M —j =1 H M —j
j=0 Jj=0
B —it1
Fla, 1 Fmp_y
p l,SZ—i-‘rQ—mk,H,l 0
l#s 1 l s
+ > 1 D DENER I SV St
=1 H mk—j l,s:—mk+1
Jj=0 l#s

C.3 Proof Lemma 6.1

Proof of Lemma 6.1 for large my, Proof.
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1 [ o , 1 0
ik = > >
S = — Flop_ _ Floxp_
mg,k my — 1 ( k ].) My ' k—1
t=—mp+1 Jj=—mp+1
_ L 1 2
1 - 2 1 -
- > - 3 Fa
my — 1 Mmg—1 \ ._
i=—my_1 1=—mg_1
1 2
1 (]
+ Z F Th—1
mpe—1 \ .
1=—mj_1
1 2 2 2
0 —Mmp_ —mp_1+1
(PO 1) = (P ) = (Pl )
mp — 1
1 0 2 —mp—1+1 2
- Z Flap_q + Z Flap_q
mg \ . )
i=—mp+1 i=—mp+1
o M1 — 1, MEg—-1 g9 mi G2
= T Smuenk—1 T T P k=1 T Pmgk
mpg — 1 mpg — 1 mg — 1

—mp_1+1 : )
Flay_
(Fofﬂk—l)2 — (P ) — (F_mk—1+1$k_1)2 . i:_%k'f‘l (Flap—1)

mg — 1 mg — 1
Hence,
2 _ mi_1—1 2 ME—1 g2 _ my 32
Smk T Tmp—1 Smp_1k-1 + mk_lsmkflkal mp—1~my,k
—mp_1+1 C 5
. 2 .
o 2 —m 2 g 41 2 > (Fzﬂﬁk—1) (C.5)
+(F "Ekfl) —(F k_lrkfl) —(F k—1 wkfl) + i=—mp+1
mk—l mk—l

. . _2 _2 2 .« .
Next, we find an expression connecting Smk’k, Smk—l,k:—l and sy, 1, ;. By definition,

2
0 0 0
_ . . 2
miSZlk’k = Z Flilik;_1 = Z (Fll'k_l) + Z Fll'k_lFS:L‘k_l
i=—mp+1 t=—mp+1 l,s=—mp+1
l#s
— 2 Q2 0 2 - _ 2
= (M1 = Dsp, oy F 1S5, gy + (FP2-1)” = (BT )
) ) —mp—1+1 0 .
—(Fmeetly )2+ Y (Flag—1)® 4+ Y Flag Forg
i=—mp+1 l,s=—mp+1
l#s
(C.6)
Substituting (C.6) into (C.5), we have
_ 0 2_(F~mk—1 2_(p~mk—1t1 2
2 _ mp_1—1 9 Mi—1 52 (FOay_1)"—(F zp_1) —(F Tp_1)
Sm,k - mi smk,l,k—l + mi mk,l,k—l + mi
0
—mp_1t+l 9 > Flog_1Foa,_y
> (Flapoa)”  bs=—mptl
+i:—mk+1 . l#s
mg my (mg—1)

(C.7)
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Likewise,

2 2
mi 1 Sp k1 = (mp—a—1)sh, g o+ mp_aSn oo+ (Flm_q)
—Mg_—2
—(Fm T gy ) = (B ™2 )P+ Y (Flagy)
i=—mp_1

-1
+ Z lek_lFs:IZk_l,
lis=—mp_1

l#s

mi_oSh, ko = (me_s—1Dsp, 1 s+mp3Sh s+ (F 205 )
—mk_g—l
—(F_m’“—3_2xk,1)2 - (F_mk’_S_ll'k,l)Q + Z (Fixk,1)2

’L'mekfzfl
-2

+ Z Fl:Ek_lFSZL‘k_l.
lis=—myp_o

l#s

Continuing in this sense and substituting gmk,i,k—z', 1=2,...,p—1linto Smk,l,k—l, we have

_ p g1 2
2 _ my—i—1 2 _Mk—p G2 (F h-1)
(mk 1)Smk 1,k 1 - Z i—1 Smk,i,kfi_'_ p—1 Smk p,k p+ Z
1=2 Mp—j IT me—; =2 H Mp—j
i=1 ) j=1 , )
p F*Z«Flfmk_ixk_l) P (F71+27mk_ixk_1)
- Z i—1 - Z —1
=2 [T me—; =2 IT mp—;
23 1]
B —'L'J+2—mk7i
» > Flzy_y
l=—it2—my,_ ;11
+2 =
=2 [T my—;
j=1
r —it1
lek,lstk,l
lis=—i+2—mp_;41
b Is
+2 I
=2 [T my—;
j=1
) (C.8)
Finally, the result follows by substituting (C'.8) into (C.7). ]

C.4 Algorithm and Flowchart For Simulation

The simulated estimate y,, , for the energy commodity model follows the Euler scheme

S 2,8 ~ ~ S S o S
ymk,k - ymk_l,k‘—l_'_amk—lvk_l(lumk—lvk_l_ymk_l,k‘—l)ymk_l,k—lAt+o-mk—17k_1ymk_17k‘—1Aka7k'

(C.9)
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Algorithm 2 Simulation scheme

Given initials r, e, {§7271070}m06050, {§%71’_1}m71605‘,1,
{yizo,o}monSm
for £k = 1to N do,
for mp_1 =2tor+k—2 do,
Compute Gy, k—15 flmy_ 1 k—1
for mp_o=2tor+k—3 do,
Compute S7, | 112 85, koVimg e Smikoye
end for
end for
end for
if =, ky, < cthen,
Save mk, mk,l, mk,Q
else
Find 7y, that minimizes Z,,, ., -
end if

N N 2 s
Compl’ue amk,k’ Mmk,kasmk,k’ymk,k'

{ngfl,—l}mfleOS,l 5

Similar algorithm can be generated for the interest rate model.

REMARK 32 We give the first iterate for the energy commodity model.

Given initials 7, €, {Sgno,o}monSo’ {8371_1,—1}7717160571’ {ng_l,—l}mﬂeOSA’ {yfno,o}monSm

Compute ayn,05 fimg,0-

For k=1:

Compute yﬁnl’l using (C.9). If Z,,, 1, < € save mq,Mmg,m_1, else, find values of m, that

minimizes =, 1,4, -

2 s
Compute a’mo,o’ Mmo,o’smhl’ymhl'

Next, we give a flowchart similar to the algorithm above.
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’ Simulation time t;, € I,(N) ‘

’ Simulation time ¢ € I,.(INV) ‘

oale 62 42 g2 s
Initials 57, 0. 87, 1 —15 Si_ 1,21 > Yo 0

l

]amk,k, Gy or oo K € T (N), my € L(k 47 — 1) ‘

Yoo Emp ks & € In(N)ymy, € Ir(k+7 — 1)
!

Follow same process

no

18 Epy ke < €7 ’ chose my, with min =,,, 1, as 1y

save my as My

—

S
Yo ke

2
g ks g ks Oy

|

Flowchart 2: LLGMM Simulation Algorithm.
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Appendix D

D.1 Proof of Lemma 9.3

Proof of Lemma 9.3 for small my, my_1 < my, Proof.

0
Fo= o | X e ) (P 1)
t=—mp+1
1 0 0
- Fozi(k—1) Fog;(k—1)
"tk a=—zm:k+1 a:_zm:kH
—mp_1—1 1
= | X PG D) o0 S (k- 1) (k1)
t=—mp+1 =y

0 0
- (FO(k — 1)) (FO;(k — 1))] - Wlbi S Futh-1) Y Fati—1)

=—mi+1 a=—my+1
o MEg—1 4 Mk—1 &4 aJ Qi qJ
- mp Smp_1,k—1 + my, SMk-—hk—lSmkak*l _Smhksmk,k
—mp_1+1
Z Fbxi(k — 1)FLLI?]'(]€ — 1)
t=—mp+1
_|_
mi
0 0 —my_ —Mp—
+F xi(k—1)F :Uj(k —1)— F "=y (k—1)F~ "™ 1xj(k: -1)
My
—mp_1+1,.. —mp_1+1,..
_F k=1l (k — 1) F~ %=1 x](k—l)
mi
Hence,
i,J . My iy mE—1 &i QJ < QJ
Sk  —  “mp Smp1 k=11 Tmp Smk,l,kflsmk,l,kfl Smk,ksmk,k
—mp_1+1
S Fla(k—1)Fla;(k—1)
t=—mp+1 FO2;(k—1)FOz;(k—1)—F~"k—12,(k—1)F~™k—=1g2;(k—1)
+ o + e
F™me—1 g (k1) F~™h—1T g (k—1)
_ e .

(D.1)
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; ; V] i GJ Gi G
Next, we find an expression connecting s, 1,5, 1S, . jand S, .S . By defi-

nition and simplification,

_. . 0 0
S S =3 Fah=1) S Falh—1)
0 0
= S Flay(k—1)Fajk—1)+ > Flayk—1)Fx;k—1)
t=—mp+1 l,s=—mp+1
l#s
= (mk—l)szr;fk_l,k—1 + mk—lgfnk_l,k—lgfnk_l,k—l + FOz(k — 1)F0$j(k -1)

—Fme-1y(k — 1)) F~™13;(k — 1)
—Fme— g (b — 1) Fme=1t g (b — 1)

—mg_1+1
—+ Z FLJ,‘l(k‘ — 1)FLSL‘](]C — 1)
L:—mk+1
0
+ Y Flay(k—1)Fszi(k—1)
l,s=—mp+1
l#s
(D.2)
Substituting (D.2) into (D.1), we have
iy =1 | mp—1 4] MEk—1 & gJ
Sm,k - m’nlflk |: ’I’)]ka1 Smk,l,kfl + ’n]kal S;nkfl,kflsmk,l,kfl]
+mk71 [Fowi(kfl)Foz‘j (k*l)*F_mkfl.’Ei(kfl)F_mkflxj (k)*l)
my mg
—mp_1+1
S Fla(k—1)Fla;(k—1)
F™mk—1T g (k—1)F~ k=1 g (k—1)  i=—mj+1
— o J + T (D.3)
0
Flz;(k—1)F*z;(k—1)
l,s=—mp+1
_ l#s
my(mp—1)
Likewise, using (D.2),
S _. _. _.
mk_ls%lk—l:k_lsgnk—l,kfl = (mk—z)sinjkfz,k72 + mk_QS}ﬂlcfmk—QSgnkfz,k*Q

+F (k- 1)F (k- 1)
—Fme2 g (e — D)2 g (k- 1)

—Fﬁmk*?%'i(k — 1)F*m’“*2x]~(kz — 1)
—mg_2

+ Y Fai(k—1)F'z(k—1)

t=—mMmg_1

-1
+ > Flaik—1)Fzi(k—1).
lis=—myp_q

l#s

227



Also,

2 Qi aQJj _ ©,] Qi aQJj
mk_QSmk—ka_QSmk—%k—Q = (mk—3)8mk—3,k—3+mk—35mk—3,k—3smk—3,k—3

—|—F_2.Il'(k — 1)F_2$j(]€ — 1)
—F 32 (ke — 1) F ™32 (k — 1)

—F s (b — D) F s g (- 1)
—mk,3—1
+ > Fai(k—1)F'a(k—1)

L:—mk,Q—l

+ Y Flayk— 1)Fz(k—1).

Continuing in this sense and substituting Sﬁnk,- k*igmk,' hin b= 25 ey d — 1 into

Qi cJ
S k_1,k—1Smk_1,k—1’ we have

m
ai aJ d m 7,] m ai aJ
i _ k—i ) k—d i
(mk_l)smk—lkalsmk—lyk_l = 2 11 Smp_sk—i T = Smkfdvk*dsmk-—d»k_d
t=2 | T mg—; [T me—j
a=1 a=
d
F— g (k—1)F~ g (k—1)
+ Z t—1
=2 [T me—;
a=1
. d Fmot Mg (k1) F ™ T Mhe—ig (k1)
t—1
=2 H Mk _j
a=1
B d Fir2 Mg (k—1)F ™ 2" ki (k—1)
t—1
=2 H mk,j
a=1
—it+2—my_,;
d > Flz;(k—1)Flz;(k—1)
l:7i+27mk_i+1
+ Z t—1
=2 IT my—;
a=1
r —it1

Flz;(k—1)Fsz;(k—1)
d l,si—i+2—mk_i+1

+ Z lis =1
=2 IT my—;
a=1
i (D.4)
Finally, the result follows by substituting (D.4) into (D.3).
O

D.2 Proof of Lemma 9.3 for small m,

Proof of Lemma 9.3 for small mg, my < my_1, Proof. Following the same steps, if my < mg_1,
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. _
.. d .. .
2] . mp—1 mg_; ,J MEg—d Qi cJ
S,k = =X | = Sp_sk—i T a1 Sk g dSmy g k—d
=1 1T mk—j [T my—;
L a=0 a=0
,J
T k1 Mk < M1
B 7i+17mk_i+1
J _ , d Flz;(k—1)Flz;(k—1)
i,J o omy—1 D Foit g (k=1)F~ g (k—1) 3 l=—itl-—my_;
mg_1,k—1 m =1 —1
=1 1 ms_j =1 [T mk—;
a=0 a=0
r —it1
Flz;(k—1)Fsz;(k—1)
d l,s:—i+2—mk,i+1
l#s
+ Z t—1
=1 [T my—;
a=0
) 0
l,s=—mp+1
l#s

D.3 Proof of Lemma 9.3 for large m;,

Proof of Lemma 9.3 for large my,

Proof.
. 1 0
Sk = 1| 2 (Frailk— 1) (Fletk—1)
t=—my+1
1 0 0
R F(Z . . a . o
|2 Fratk-D S Foa(k-1)
a=—my+1 a=—mg+1
1 -1
= Flo;(k—1)Flz;(k—1
mp — 1 L:;}Cl ( ) .7( )
1 L -1
- Flo;(k -1 Fo: (k-1
mp_1 __Z: ( ) __Z zj( )
L=—mg_1 L=—mg_1
1 _ —1
+ Floai(k -1 Flo(k—1
Mp_1 _Z ( ) _Z zj( )
L==mk—1 L=—Mp_1
+mk 1 [FOJJZ(k — l)Fol‘j<k — 1) — F_mk—lxi(k — I)F_mk_lxj(k _ 1)

— Pty (p — D) Pt g (- 1)]
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—mp_1+1 —mp_1+1

! Z Flzi(k Z Flzj(k—1)

mp— 1| 4 “
t=—mp+1 t=—mp+1
1 0 0
—— > Fak-1) Y  Fak-1)
m t=—mp+1 t=—mp+1
_ o omp—1 —1 4 ME-1_ & gi Mk__gi  &i
- mg — 1 Smk717k71 my — lsmk 1,k— 1Smk,1,k71 - my — 1 mk,ksmk,k
+F0$i(k—1)F0xj(]€— 1) — F~™—1gy(k — 1) F~™k—125(k — 1)
mp — 1

—mg_1+1
Fray(k—1)Flai(k—1
Fome e - et 1) e DT

mg — 1 mg — 1
Hence,
ty . MmE_i1—1 4] ME—1 Qi qJ mE Qi qJj
Sm,k - mi—1 Smk 1,k— 1+ my— 1Smk 1,k— 1Smk,1,k71 my— 1Smk,k5mk,k
JrF%i(/kﬂ)}«“%g(k 1)—F ™k—1g,(k—1)F~ ™k—1g;(k—1)—F™k—1 g, (k_1) F~ k-1 15, (k—1)
mg—1
—mp—1+1
S Flaj(k=1)Ftaj(k-1)
+L:—mk+1

mg—1

(D.5)
. : Qi cJ Qi qJ (]
Next, we find an expression connecting Smk’kSmk,k, Smk—l,k—lsmkq,kq and Sp— 11" By

definition and simplification,

i 0 0
miSh, WS =Y Fak—1) Y Flajk—1)
t=—mp+1 t=—mp+1
0
= Z FL:L’Z'(k — 1)FL:E]‘(]€ — 1)

t=—mp+1

0
+ > Flay(k—1)Fszj(k—1)

l,s:;émk—i-l

g7
myg_1,k—1mg_1,k—1
+FO;(k — 1) FOr(k — 1) — F~™k—12;(k — 1) F =™ 12;(k — 1)
—Fme— g (b — 1) Pt g (b — 1)

—mk_l—i-l
+ Z FLIEl(k‘ — 1)FL.TJ(]€ — 1)

t=—mp+1

= (mg— 1—1) mk L1 T M 15

0
+ > Flay(k—1)Fszj(k—1)
l,s=—myp+1
l#s
(D.6)

Substituting (D.6) into (D.5), we have
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1] . mg_1—1 33
§ -1

Svi

QJ
mk—lyk_lsmk—hk_l

mk T mg M1,
+F%i(k_l)F%j(k_1)_F*mk—1xi(k-1)F*mk—1xj(k—1)—F*mk—l+1xi(kz—1)F*mk—1+1zj(k;—l)
my
—mp_1+1 ; Flz;(k—1)F*z;(k—1)
> Fziy(k—1)F‘z;(k—1) l,s=—mp+1
+ L=—mk+1 l;és
mi my(mg—1)
D.7)
Likewise,
S . . .
mkfls;lkflykflsgnkfl,kfl = (mp—2 — 1)3;31672,16*2 + mk_QS:nk727k*QSink72,k*2
+F (k- D)F (k- 1)
— P2l ( — 1) P2 gk — 1)
—F7" 2y (k — 1) F~ ™20 5(k — 1)
—ME_2
+ > Fa(k—1)Fa(k—1)
L=—Mk_1
-1
+ Y Fla(k—DFzi(k—1),
l,s=—mp_1
l#s
0 i . . .
mk—QS:nk_g,k—2S;7nk,2,k—2 = (mk_S - 1)8:;3;@,3,]6—3 + mk_gs’;{nk—37k—3sgnk73ak_3

+F2zi(k — 1)F2zj(k — 1)
—F =32 (ke — 1) F =32 (k — 1)

— P g (b — )P g (k- 1)

—mk,3—1

Y

t=—mp_o—1

Flay(k — 1) Fla;(k — 1)

—2
+ Y Fla(k—1)Foxi(k—1).
l,s:—mk,g

l#s

Continuing in this sense and substituting Smk,i,k—i’ i=2,...,d—1into gmk,l,k—l, we have

. d .. .
QtsJ _ mg—;—1 .7 Mk—d Qi QJ
(me-1)S5 k1 = 22 o | Pk + = St ak—dmp_g k—d
1= Mk Mp_;
a=1 J a=1 J

d poitly, (k—1)F~itle;(k—1)

+> p— (D.8)
1=2 IT me—;
a=1
B i F Mg (k—1)F ™ "k —ig (k—1)

t—1
=2 IT mue—j
a=1
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—i+2—my_,;
, , Flo;(k—1)Flz;(k—1)
B F77,+27mk7,ixi(k_l)F71+27mk7ixj(k_l) + Z l:_i+2_mk7i+1

—1 t=1
=2 IT me—; (=2 [T me—j
a=1 a=1

—i+1

Flz;(k—1)F3x;(k—1)
d lys=—14+2—mp_;41

+ Z l#s

1=2 L]:II Mg _j
a=1
(D.9)
Finally, the result follows by substituting (D.8) into (D.7). ]
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